Posts

ModBerry 500-CM4 with ESP32 for power management

Sleep functionality for ModBerry 500 CM4 devices

ModBerry 500-CM4-PM series from TECHBASE company is an extended version of Raspberry Pi Compute Module 4 based devices for better power management in changing conditions of industrial applications. With the help of the integrated ESP32 module and the Arduino environment, the module can manage boot, sleep mode, or safe shutdown of the device in case of unexpected drop in the power network.

In the last few years developers marketed a wide range of ARM-based development boards, lacking in enhanced power management, especially sleep and wake up modes, commonly used in PC-grade computing. These boards are not adjusted for battery power supply, so it’s natural that sleep/wake functions should be implemented. In connection with the development of solutions based on Linux-SBC, key factor is adding sleep modes to any remote installation

ESP32 based addon module for Raspberry Pi

The TECHBASE sleep/wake add-on module can wake a device using a scheduler/timer that has built-in algorithms or can be programmed by the user. Modules based on ESP32-ROVER are used in Moduino X series boards. For Raspberry Pi, the ESP32 provides a lightweight and low-power solution. The program can also be woken up by external triggers, such as changes in input state. Various scenarios can be configured for sleep, shutdown, and wake functions, ensuring continuous operation of devices, the security of data, and the continuity of work in the event of a power outage.

Advanced power management solution

Most advanced configuration includes use of ESP32 module, known from the successful, lightweight Moduino X series, for extra logic for wake up / sleep scripts. This addon will allow the RaspberryPi-based ModBerry device to be woken up by the internal ESP32 controller

Moduino-ModBerry symbiosis allows a wide range of wake-up/sleep schedule customization, in order to perform best and save energy according to power supply state. Arduino and MicroPython environments provide libraries to control different scenarios of data and power management.

Sleep mode with additional power backup

Additional power management option for ModBerry devices is sleep functionality enhanced with SuperCap UPS energy backup device. This solution allows programming scenarios including the execution of chosen actions, in order to save data, send a notification and restart/shutdown the controller after completion.

ModBerry 500-CM4-PM availability

The preliminary ModBerry 500-CM4-PM devices are available on request and delivery time will be specified by the Sales Dept. depending on the size of the project. Contact via email or Live Chat here: https://iiot-shop.com/

ESP32-based devices with LoRa / LoRaWAN wireless network

One way of long-range and low-power data transmission is LoRa wireless technology. Since the Internet of Things market (with ESP32 – based solutions) is mainly covered with short-range Wi-Fi and Bluetooth and long-range with 3G / NarrowBand-IoT technologies, LoRa oftens is omitted or simply unknown by IoT users. Below you will find a short representation of what LoRa is and how can it be used.

What is LoRa / LoRAWAN network?

LoRaWAN® network architecture is deployed in a star-of-stars topology in which gateways relay messages between end-devices and a central network server. The gateways are connected to the network server via standard IP connections and act as a transparent bridge, simply converting RF packets to IP packets and vice versa. The wireless communication takes advantage of the Long Range characteristics of the LoRa physical layer, allowing a single-hop link between the end-device and one or many gateways. All modes are capable of bi-directional communication, and there is support for multicast addressing groups to make efficient use of spectrum during tasks such as Firmware Over-The-Air (FOTA) upgrades or other mass distribution messages.

Source: https://lora-alliance.org/about-lorawan

Industrial use of LoRa & ESP32-based solutions

One of industrial IoT devices, supporting LoRa wireless technology is ESP32 based eModGATE from TECHBASE. Economical, ESP32-based solution can serve as an end-point in any installation or works well as a gateway, gathering data from scattered sensor mesh across the installation. For more information and also Raspberry Pi based solutions check Industrial IoT Shop with all the configuration options for eModGATE.

eModGATE with ESP32

Arduino-aided ModBerry 500-CM4 with ESP32 for power management

Sleep functionality for ModBerry 500 CM4 devices

TECHBASE company designed an extended version of Raspberry Pi Compute Module 4 based devices, ModBerry 500-CM4-PM series for better power management in changing conditions of industrial applications. With the use of GPIO the module can manage boot, sleep mode or safe shutdown of the device in terms of unexpected drop in the power network with help of built-in ESP32 module and Arduino environment.

In the last few years developers marketed a wide range of ARM-based development boards, lacking in enhanced power management, especially sleep and wake up modes, commonly used in PC-grade computing. These boards are not adjusted for battery power supply, so it’s natural that sleep/wake functions should be implemented. In connection with the development of solutions based on Linux-SBC, key factor is adding sleep modes to any remote installation

ESP32 based addon module for Raspberry Pi

With built-in algorithms and the possibility to program on your own, the TECHBASE’s sleep/wake addon module can wake the device using a scheduler/timer. The module itself is based on ESP32-WROVER, used in the Moduino X series. ESP32 as a lightweight and low-powered solution is a perfect aid system for Raspberry Pi. Another option is wake on external triggers, e.g. change of input state, etc. All the options for sleep, shutdown and wake can be configured for various scenarios to ensure constant operation of devices, safety of data and continuity of work in case of power failure in any installation.

Sleep mode with additional power backup

Additional power management option for ModBerry devices is sleep functionality enhanced with SuperCap UPS energy backup device. This solution allows programming scenarios including the execution of chosen actions, in order to save data, send a notification and restart/shutdown the controller after completion.

Advanced power management solution

Most advanced configuration includes use of ESP32 module, known from the successful, lightweight Moduino X series, for extra logic for wake up / sleep scripts. This addon will allow the RaspberryPi-based ModBerry device to be woken up by the internal ESP32 controller

Moduino-ModBerry symbiosis allows a wide range of wake-up/sleep schedule customization, in order to perform best and save energy according to power supply state. Arduino and MicroPython environments provide libraries to control different scenarios of data and power management.

ModBerry 500-CM4-PM availability

The preliminary ModBerry 500-CM4-PM devices are available on request and delivery time will be specified by the Sales Dept. depending on the size of the project. Contact via email or Live Chat here: https://iiot-shop.com/



IoT device built on ESP32 module and NarrowBand-IoT wireless technology

The NB-IoT is becoming a standard in wireless communication of IoT devices, for standalone solutions and complex installations with thousands of units, coordinated with gateways. Will NarrowBand-IoT replace other wireless technologies in industrial automation?

What exactly is NarrowBand?

NarrowBand-IoT (NB-IoT) is a radio technology in the field of LPWAN (Low Power Wide Area Network) dedicated for IoT devices, operating on the licensed frequency band used by telecommunications operators.

The biggest advantages of NB-IoT include:

  • long battery life (up to 10 years),
  • efficiency in the amount of data transferred,
  • intra-building penetration,
  • the ability to connect even tens of thousands of devices in one system,
  • a global standard,
  • a high level of security and low cost

You can build mass solutions and those that until now were considered unprofitable. NB-IoT technology works in the licensed band, so there is no risk of interference and blocking communication by competing networks.

The service life of devices powered by two AA batteries is up to 10 years. However, the devices themselves are constructed in such a way that they can work for many years without the need for technical supervision and recharging the battery.

NB-IoT used in industrial solutions

One of many uses of NarrowBand-IoT wireless modems can be communication of edge devices, dedicated to data management, process control (e.g. with MQTT protocol) and monitoring. Latest ESP32-based eModGATE controller from TECHBASE company is a series utilizing MicroPython environment to provide data management solutions for end-points applications. The eModGATE has built-in Wi-Fi/BT modem and can be equipped with additional NarrowBand-IoT modems

eModGATE with ESP32

eModGATE eqipped with wireless NB-IoT modem are perfect for industrial automation solutions, e.g. data logging, metering, telemetrics, remote monitoring, security and data management through all Industrial IoT applications.

Supported bandwidths:

  • Global-Band LTE CAT-M1:  B1/B2/B3/B4/B5/B8/B12/B13/B18/B19/B20/B26/B28/B39;
  • Global-Band LTE CAT NB-IoT1:  B1/B2/B3/B5/B8/B12/B13/B17/B18/B19/B20/B26/B28;
  • GPRS/EDGE 850/900/1800/1900Mhz Control Via AT Commands

Supported data transfer:

  • LTE CAT-M1(eMTC) – Uplink up to 375kbps, Downlink up to 300kbps
  • NB-IoT – Uplink up to 66kbps, Downlink up to 34kbps
  • EDGE Class – Uplink up to 236.8Kbps, Downlink up to 236.8Kbps
  • GPRS – Uplink up to 85.6Kbps, Downlink up to 85.6Kbps

NarrowBand-IoT one of standards for Industrial IoT

The NB-IoT is becoming a standard in wireless communication of IoT devices, for standalone solutions and complex installations with thousands of units, coordinated with gateways. Will NarrowBand-IoT replace other wireless technologies in industrial automation?

What exactly is NarrowBand?

NarrowBand-IoT (NB-IoT) is a radio technology in the field of LPWAN (Low Power Wide Area Network) dedicated for IoT devices, operating on the licensed frequency band used by telecommunications operators.

The biggest advantages of NB-IoT include:

  • long battery life (up to 10 years),
  • efficiency in the amount of data transferred,
  • intra-building penetration,
  • the ability to connect even tens of thousands of devices in one system,
  • a global standard,
  • a high level of security and low cost

You can build mass solutions and those that until now were considered unprofitable. NB-IoT technology works in the licensed band, so there is no risk of interference and blocking communication by competing networks.

The service life of devices powered by two AA batteries is up to 10 years. However, the devices themselves are constructed in such a way that they can work for many years without the need for technical supervision and recharging the battery.

NB-IoT used in industrial solutions

One of many uses of NarrowBand-IoT wireless modems can be communication of edge devices, dedicated to data management, process control (e.g. with MQTT protocol) and monitoring. Latest ESP32-based eModGATE controller from TECHBASE company is a series utilizing MicroPython environment to provide data management solutions for end-points applications. The eModGATE has built-in Wi-Fi/BT modem and can be equipped with additional NarrowBand-IoT modems

eModGATE eqipped with wireless NB-IoT modem are perfect for industrial automation solutions, e.g. data logging, metering, telemetrics, remote monitoring, security and data management through all Industrial IoT applications.

Supported bandwidths:

  • Global-Band LTE CAT-M1:  B1/B2/B3/B4/B5/B8/B12/B13/B18/B19/B20/B26/B28/B39;
  • Global-Band LTE CAT NB-IoT1:  B1/B2/B3/B5/B8/B12/B13/B17/B18/B19/B20/B26/B28;
  • GPRS/EDGE 850/900/1800/1900Mhz Control Via AT Commands

Supported data transfer:

  • LTE CAT-M1(eMTC) – Uplink up to 375kbps, Downlink up to 300kbps
  • NB-IoT – Uplink up to 66kbps, Downlink up to 34kbps
  • EDGE Class – Uplink up to 236.8Kbps, Downlink up to 236.8Kbps
  • GPRS – Uplink up to 85.6Kbps, Downlink up to 85.6Kbps

Available open source ventilator projects to help COVID-19 patients

When the news came out that ventilator shortages could be a problem, many saw the need for alternatives to the big manufacturers and rushed to create them. Unlike industrial projects, these projects were open and shared. Currently, Robert Reed and his group are starting to systematically evaluate the ranking of over 80 such open source projects.

Their work is a milestone in public research and development efforts to solve problems. For many ventilator builders, the group recognized the need for independent evaluation and testing of various projects. This control provides important feedback to both designers and future builders. This is a service you can expect from government regulators if they can act very quickly.

Reid and colleagues Geoff Mulligan, Lauria Clarke, Juan E. Villacres Perez and Avinash Baskaran to help to learn about these studies. This includes submission of modular team designs that allow distributed production and unique suggestions for testing and monitoring these systems. This is called VentMon.

Industrial Arduino-like devices as a base of medical equipment?

When industrial IoT devices and edge devices, like medical equipment work together, digital information becomes more powerful. Especially in contexts where you need to collect data in a traditional edge context, or control the servo-motors of a ventilatr. You can then remotely monitor the container using the sensor.

By introducing AI (artificial intelligence) into the device itself, edge computing can also make more context-sensitive, quick decisions at the edge. Data gathered from the sensors can be transferred to the cloud at any time after local work has been completed, contributing to a more global AI process, or archived. With the combination of industrial IoT devices and advanced technology, high quality analysis and small footprint will become the AI standard in 2020.

Industrial IoT use of ESP32 chip in eModGATE

Latest innovations used in industrial solutions

One of many uses of IoT can be edge devices, dedicated to data management, process control (e.g. with MQTT protocol) and monitoring. Latest ESP32-based eModGATE controller from TECHBASE company is a series utilizing MicroPython environment to provide data management solutions for end-points applications. The eModGATE has built-in Wi-Fi/BT modem and can be equipped with additional NarrowBand-IoT, LoRa, ZigBee, etc.

For example eModGATE eqipped with wireless NB-IoT modem are perfect for industrial automation solutions, e.g. data logging, metering, telemetrics, remote monitoring, security and data management through all Industrial IoT applications.

Raspberry Pi sales rise during coronavirus pandemic

In March, sales of Raspberry Pi single-board computers totaled 640,000. The consumer find it the cheapest way to start tinkering and drove to the second-largest sales month since Raspberry Foundation began selling for home use.

Other uses of Raspberry Pi computers are more directly associated with the appearance of COVID-19. For example, in Colombia, efforts are underway to run a ventilator on a Pi computer, and if successful, it will help solve the problem of the lack of traditional ventilation equipment in this country.

I think what this is telling us is that we’re seeing genuine consumer use of the product. It’s not like your desktop PC – you’re not going to be able play Crysis on it – but if you want a machine you can use to edit documents, use the web, use Gmail and Office 365 and all the baseline use cases of a general purpose computer, the Raspberry Pi 4 is a product we’ve made to get over that bar.

Eben Upton, the Raspberry Pi’s co-creator for Techrepublic

When the Raspberry Pi Foundation asked to talk about how to deal with COVID-19 using Raspberry Pi devices, one of the most common uses he saw was 3D printing with use of Raspberry Pi, especially for 3d-printed faceshields.

Raspberry Pi 4
Raspberry Pi 4

Arduino-based ventilator to help coronavirus patients

A month ago we wrote about Arduino-based solution, similar to the one tested in Columbia. As far as manufacturing and using home-made medical equipment is not advised, the spread of the COVID-19 might push humanity to such solutions. Johnny Lee’s project involves a simple, low-cost ventilator controlled via Arduino.

The idea is that since these machines are basically just blowers controlled by a brushless DC motor, an Arduino Nano equipped with an electonic speed controller could allow it to act as a one. Such a setup has been shown to provide more than enough pressure for a ventilator used on COVID-19 patients. This device has in no way been evaluated or approved for medical use, but it does provide a starting point for experimentation.

Source: https://blog.arduino.cc/2020/03/17/designing-a-low-cost-open-source-ventilator-with-arduino/

New #CoronaIOT initiative from Industrial IoT manufacturer

Trends indicate a weakening of many sectors of the economy, including the IoT sector. However, we can prevent the upcoming crisis with products and technology keeping up with the inevitable changes in our daily lives.

TECHBASE Group took the challenge of gathering potential partners for projects that serve improvement of health safety and worldwide trend of Social Distancing. The program will periodically present new IoT projects, involving manufacturers, software and hardware developers, new technology influencers and media.

Industrial Raspberry Pi powered devices as a base of medical equipment?

When industrial IoT devices and edge devices, like medical equipment work together, digital information becomes more powerful. Especially in contexts where you need to collect data in a traditional edge context, or control the servo-motors of a ventilator. You can then remotely monitor the container using the sensor.

By introducing AI (artificial intelligence) into the device itself, edge computing can also make more context-sensitive, quick decisions at the edge. Data gathered from the sensors can be transferred to the cloud at any time after local work has been completed, contributing to a more global AI process, or archived. With the combination of industrial IoT devices and advanced technology, high quality analysis and small footprint will become the AI standard in 2020.

ModBerry M500 with Raspberry Pi’s 4 on-board

Battery powered IoT devices crucial to 2020+ standards

Technology must transfer data to the central system in real time, otherwise it may have negative consequences. If the sensor battery power runs out, a machine failure may stop production for one day or lead to direct danger. If battery life is unbelievable and short, IoT applications will become useless, causing more interference rather than making life easier for its intended purpose. Therefore battery powered IoT devices come as a standard in up-to-date IoT installations

Wireless sensors and sensor networks are one of the elements of the Internet of Things systems and intelligent factories. Replacing the standard sensors and data collection devices with versions that communicate wirelessly gives many benefits, but also enforces a highly thought-out system design that will minimize energy consumption. This is important because these systems must work for many years without servicing. In the article we present the issues regarding the design of systems and forecasting of energy consumption in IoT systems.

Wireless communication vs Battery power

The idea of wireless sensor networks has been around for at least two decades, while the IEEE subgroup working on personal wireless networks defined the 802.15.4 standard in 2003, a year later the first versions of ZigBee appeared. Since then, many varieties of wireless communication have been developed, such as LoRa & NarrowBand-IoT and additional functions introduced, as a result of which designers now have a choice of various open or proprietary protocols. What significantly affects the way the entire project is implemented is energy consumption.

Obrazek posiada pusty atrybut alt; plik o nazwie battery-iot-esp32-1030x386.png
Battery powered IoT installation. Source: https://modberry.techbase.eu/

The basic elements of these systems are sensors that measure physical quantities. Some signal and data processing capabilities are also important. After all, the communication interface is important, which will allow you to pass the measured data on. Such a sensor node should wake up from time to time, make contact with its superordinate controller, transfer data and fall back to sleep again. Battery life depends on the total charge collected. Minimizing this consumption in the long run means that you need to minimize energy consumption during each work cycle. In many cases, the sensor will only work for a small fraction of the time. A measurement that lasts a few milliseconds can be triggered once per second, once per minute, or even less frequently. Therefore, the energy consumed in sleep mode may dominate the total energy consumption.

Battery-ready IoT devices based on ESP32

Battery / SuperCap power support allows the processes and data to be securely executed, saved or transferred, and the operating system to be safely shutdown or reboot, if the power source has been restored. The power failure alert can also be sent to cloud service, to perform custom task, specified by user or self-learning AI algorithm.

The Moduino device is a comprehensive end-point controller for variety of sensors located throughout any installation. It fully supports temperature and humidity sensors and new ones are currently developed, e.g. accelerometer, gyroscope, magnetometer, etc.

Battery powered Moduino ESP32
Battery powered IoT installation. Source: https://modberry.techbase.eu/

ModuinoModBerry symbiosis allows wide range of wake-up/sleep schedule customization, in order to perform best and save energy accordingly to power supply state. Arduino and MicroPython environments provide libraries to control different scenarios of data and power management.

With built-in algorithms and the possibility to program on your own, the TECHBASE’s sleep/wake addon module can wake the device using schedule/timer. Another option is wake on external trigger, e.g. change of input, etc. All the options for sleep, shutdown and wake can be configured for various scenarios to ensure constant operation of devices, safety of data and continuity of work in case of power failure in any installation. Check battery-powered Moduino X0

ZigBee Mesh used in industrial IoT applications

ZigBee Mesh used in industrial IoT applications

ZigBee mesh‘s usefulness for IoT is partly due to the fact that it is an open standard. The same products can be used all over the world, which gives customers a large selection of available option. The high competition between products and producers means that the created solutions are innovative, characterized by high quality and give customers a considerable choice. Many suppliers of cooperating elements of this ecosystem mean that they are not limited to any specific brands or specific semiconductor manufacturers.

Competitiveness of ZigBee based solutions

With a maximum data bandwidth of 250 kbps at 2.4 GHz, ZigBee is slower than other popular wireless standards such as Wi-Fi or Bluetooth, but it doesn’t matter in typical sensor applications. ZigBee Mesh is designed to send small data packets at relatively long intervals, which is usually sufficient to collect data from temperature sensors, safety sensors, air quality monitoring systems and similar subsystems. In the meantime, the low bandwidth affects the low power needed for the system to work, so that ZigBee nodes can usually work for many years on a single AAA battery.

ZigBee Power Consumption. Source: ZigBee Alliance
ZigBee Power Consumption. Source: ZigBee Alliance

With low power consumption, ZigBee supporting products typically have a short transmission range – typically from 10 to 15 meters, and the signal they emit is easily disturbed by obstacles on the route, or changes in the environment. However, the beauty of ZigBee devices lies in their work as part of a lattice topology network, where each of them transmits signals between themselves over a total of longer distances. The grid topology also means that damage to a single device will not stop the entire network, as communication can simply be redirected.

Industrial use of ZigBee Mesh

One of industrial IoT devices, supporting ZigBee Mesh technology is eModGATE from TECHBASE. Economical, ESP32-based solution can serve as an end-point in any installation or works well as a gateway, gathering data from scattered sensor mesh across the installation. For more information check Industrial IoT Shop with all the configuration options for eModGATE, including ZigBee modem.

eSIM support for Rasperry Pi based ModBerry industrial device

The embedded SIM card (eSIM) is a form of programmable SIM card that is directly built in the device. eSIM is a global GSMA specification that enables remote SIM delivery to any supported device, and GSMA defines eSIM as the SIM card for the next generation of connected consumer / professional devices and network solution with the use of eSIM technology.

Easy SIM operator swap

In Industrial IoT applications in which there is no need to change the SIM card, the need of using a connector is avoided, which increases reliability and data security. eSIM can be remotely configured – users can add or change operators without having to physically swap the SIM card from the device. It is often a crucial requirement for the installations where factors such as temperature, water and shock resistance, as well as lack of access forces user to choose remote solutions.

eSIM Raspberry Pi Connvectivity

Raspberry Pi & ESP32-based devices

TECHBASE company is now developing eSIM support for Raspberry Pi and ESP32 industrial devices, such as ModBerry and Moduino X to improve the handling of wireless modem connectivity. To receive an offer for ModBerry/Moduino device with eSIM-based modem, contact our Sales Department via e-mail or Live Chat.