Posts

First modular industrial PC and powerful cluster server in one

New features of multiple Raspberry Pi Compute Modules 4 brought to new ClusBerry series

Accompanying the release of ModBerry 500-CM4 and AI GATEWAY 9500-CM4, we present to you a cluster version of the device, called ClusBerry 9500-CM4. Main difference between standard Gateway and ClusBerry is the possibility to include multiple Raspberry Pi Compute Module 4 in one device, as well as the intended suitable amount of wired and wireless interfaces, suited for the project.

Fully configurable devices are something desirable in the IoT market, where high performance and low cost is a key factor to success of implementation. TECHBASE’s Industrial IoT Ecosystem gives the opportunity to adjust ordered devices with certain resources and cut unnecessary I/Os, lowering the total cost of the device. 

Raspberry Pi Compute Module 4 Cluster

Reason for use of Raspberry Pi CM4 cluster in ClusBerry 9500-CM4

Various implementations must have guaranteed high hardware performance to react fast enough in real time. For this purpose, the arrays of processor blocks are constructed to be assigned to individual tasks. For several years now, attempts have been made to use various types of SBC for this purpose, including, of course, Raspberry Pi. However, the practical effectiveness of such solutions so far has not been of interest for several reasons. First of all, these solutions were most often associated with many mechanical limitations and the structure of the matrix itself required excessive wiring, preventing failure-free operation and the cost of the entire maintenance of the structure.

Raspberry Pi Compute Module 4 Cluster

This is where Raspberry Pi Compute Module can shine, but due to the hardware speed limitations of the buses in this module, it was not completely effective and was rather a development platform. Altho the introduction of new Compute Module 4 has opened the possibility to construct and maintain effective hardware matrix solutions with the use of both PCI-Express buses and 1GBps Ethernet. Therefore, the ClusBerry 9500-CM4 opens up completely new capabilities of utilizing cluster solutions for Industrial Automation and server applications.

Wide range of ClusBerry modules

ClusBerry 9500-CM4 supports up to 8 cluster modules and comes with a variety of interchangeable modules to choose from, including:

  • Standard 9500-CM4 cluster module with Compute Module 4 and chosen configuration:
    • I/O Controller with range of DI, DO, AI, 1-Wire, RS-232/485 and CAN interfaces
    • Communication Gateway with wired (1/2x Ethernet, Serial Ports) and wireless interfaces (LTE-cat.M1, 4G, 5G, LoRa, ZigBee, Z-Wave, Wireless M-Bus)
    • AI Gateway with 1x Coral Edge TPU via PCIe M.2, introduced in December 2020: https://iiot-shop.com/product/ai-gateway/ or up to 4x Coral Edge TPU via USB3.0
  • NAS File Server with 2x SSD SATA III and RAID support, managed with Nextcloud or ownCloud software
  • USB3.0 Hub for 5G communication, Modems, AI Cluster and peripherals
  • Gigabit LAN/WAN Router with additional 2.5GbE network card as an independent switch/router shielded from the mainboard cluster network
  • SuperCap / Power management module for backup power supply (supercapacitors / Li-Ion battery) and sleep mode management aided with ESP32-module
  • Additional expansion cards, with resources suited for the installation (DIO, AIO, Serial Ports and dedicated sensor cards, detailed below)
Raspberry Pi Compute Module 4 Cluster

ClusBerry 9500-CM4 with available expansion cards 

ClusBerry 9500-CM4 can be equipped with multiple expansion cards, e.g. serial RS-232/485 ports, range of digital and analog I/Os, USB, HDMI and Ethernet. Interfaces can be expanded with additional I/Os and opto-isolation, relays, Ethernet, 1-Wire, CAN, M-Bus Master and Slave, accelerometer and many more features like TPM Security Chip & eSIM. The device can also be equipped with additional SuperCap backup power source for continuous work and safe boot/shutdown in case of emergency.

ClusBerry 9500-CM4 series also offers a standard PCI module support for various wireless communication protocols, such as:

  • GSM modem (4G/LTE and fast 5G modem)
  • economic NarrowBand-IoT technology
  • LoRa, ZigBee, Z-Wave, Sigfox, Wireless M-Bus
  • secondary Wi-Fi/Bluetooth interface or Wi-Fi Hi-Power
  • custom wireless interfaces
Raspberry Pi Compute Module 4 Cluster

Software cluster management with Docker and K3s Lightweight Kubernetes

With use of Docker-based and Kubernetes solutions, installation and management of ClusBerry 9500-CM4 is easy and backed with a large community for further support and development. Kubernetes is a portable, extensible open-source software platform for managing containerized tasks and sites that enables declarative configuration and automation. The Kubernetes ecosystem is large and dynamically developing. Kubernetes services, support and tools are widely available.

Kubernetes provides:

  • Detection of new services and traffic. Kubernetes can balance the load and redirect the network traffic to ensure the stability of the entire installation.
  • Kubernetes data storage management enables you to automatically mount any type of storage system – on-premises, from cloud providers and others.
  • Automatic deployment and rollback. You can describe the expected state of your installation with Kubernetes, which will take care of bringing the actual state to the expected state in a controlled manner. For example, with Kubernetes, you can manage your cluster modules at ease, boot modules from one to another, upgrade firmware crosswise and provide safe operation of each module
  • Automatic management of available resources. ClusBerry 9500-CM4 provides a cluster of modules that Kubernetes can use to run tasks in containers. You determine the CPU power and RAM requirements for each container. Kubernetes arranges containers on machines in such a way as to make the best use of provided resources.
  • Self-healing Kubernetes reboots containers that have stopped working, replaces them with new ones, forces disabling containers that are not responding to certain status queries, and does not announce their availability until they are ready to run.
  • Managing confidential information and Kubernetes configuration with TPM Security Chip allows you to store and manage confidential information such as passwords, OAuth tokens and SSH keys. Secured data and configuration information can be provided and changed without having to rebuild the container image and without exposing sensitive data in the overall software configuration.
Raspberry Pi Compute Module 4 Cluster

ClusBerry 9500-CM4 availability

First prototypes are being developed, since Compute Module 4 is already available for the purchase. Delivery time for various configurations of ClusBerry will be approximately 2 months, depending on the CM4 supply on the market and chosen expansion cards. For more information contact TECHBASE’s Sales Department via email or Live Chat here.

Compute Module 4-based industrial controller available for purchase

TECHBASE’s ModBerry industrial computer series has received an update to Compute Module 4 and is available for pre-orders. TECHBASE is leading manufacturer of Industrial Raspberry Pi and Industrial Compute Module solutions. ModBerry 500 series is fully compatible with all releases of Compute Module from Rasbperry Pi foundation.

Main features of updated device are:

  • up to 4x faster eMMC Flash with up to 32GB storage
  • up to 2x faster performance of CPU apllications than previous CM3 version
  • up to 8x more RAM (8GB LPDDR4)
  • optional 1Gbit Ethernet interface
  • optional PCIe card support for NVMe SSD drive (via M.2)
  • optional second PCIe support for wireless modem solutions

First orders will be ready with subject to the availability of the CM4 module itself.

Raspberry Pi Compute Module 4 world premiere

Few days ago, Raspberry Foundation announced new member of its family, a Rasbperry Pi Compute Module 4. It’s quite obvious, even from the first look, that the new module is very different from its predecessors. Main difference is a new form factor, leaving DDR2 SODIMM in the past.

The same 64-bit quad-core BCM2711 application processor as in Raspberry Pi 4B, the Compute Module 4 brings higher performance: faster CPU cores, better multimedia, more interfacing capabilities, and, for the first time, a choice of RAM densities and a wireless Wi-Fi and Bluetooth connectivity options.

Compute Module 4 comes in 32 variants. Lite, as always, offers no eMMC memory, a and standard versions come with up to 8GB RAM, 32 eMMC Flash and wireless modem.

New Raspberry Pi Compute Module 4 in new form factor

New features of Compute Module 4

  • 1.5GHz quad-core 64-bit ARM Cortex-A72 CPU as in Raspberry Pi 4 version B
  • 1GB, 2GB, 4GB or 8GB LPDDR4-3200 SDRAM
  • 8GB, 16GB or 32GB eMMC Flash storage for Standard version, Lite version without eMMC
  • Optional 2.4GHz and 5GHz IEEE 802.11b/g/n/ac wireless LAN and Bluetooth 5.0
  • Single-lane PCI Express 2.0 interface
  • Gigabit Ethernet PHY with IEEE 1588 support
  • Dual HDMI interfaces, at resolutions up to 4K
  • 28 GPIO pins, with up to 6 × UART, 6 × I2C and 5 × SPI

Source: https://www.raspberrypi.org/blog/raspberry-pi-compute-module-4/

NarrowBand-IoT one of standards for Industrial IoT

The NB-IoT is becoming a standard in wireless communication of IoT devices, for standalone solutions and complex installations with thousands of units, coordinated with gateways. Will NarrowBand-IoT replace other wireless technologies in industrial automation?

What exactly is NarrowBand?

NarrowBand-IoT (NB-IoT) is a radio technology in the field of LPWAN (Low Power Wide Area Network) dedicated for IoT devices, operating on the licensed frequency band used by telecommunications operators.

The biggest advantages of NB-IoT include:

  • long battery life (up to 10 years),
  • efficiency in the amount of data transferred,
  • intra-building penetration,
  • the ability to connect even tens of thousands of devices in one system,
  • a global standard,
  • a high level of security and low cost

You can build mass solutions and those that until now were considered unprofitable. NB-IoT technology works in the licensed band, so there is no risk of interference and blocking communication by competing networks.

The service life of devices powered by two AA batteries is up to 10 years. However, the devices themselves are constructed in such a way that they can work for many years without the need for technical supervision and recharging the battery.

NB-IoT used in industrial solutions

One of many uses of NarrowBand-IoT wireless modems can be communication of edge devices, dedicated to data management, process control (e.g. with MQTT protocol) and monitoring. Latest ESP32-based eModGATE controller from TECHBASE company is a series utilizing MicroPython environment to provide data management solutions for end-points applications. The eModGATE has built-in Wi-Fi/BT modem and can be equipped with additional NarrowBand-IoT modems

eModGATE eqipped with wireless NB-IoT modem are perfect for industrial automation solutions, e.g. data logging, metering, telemetrics, remote monitoring, security and data management through all Industrial IoT applications.

Supported bandwidths:

  • Global-Band LTE CAT-M1:  B1/B2/B3/B4/B5/B8/B12/B13/B18/B19/B20/B26/B28/B39;
  • Global-Band LTE CAT NB-IoT1:  B1/B2/B3/B5/B8/B12/B13/B17/B18/B19/B20/B26/B28;
  • GPRS/EDGE 850/900/1800/1900Mhz Control Via AT Commands

Supported data transfer:

  • LTE CAT-M1(eMTC) – Uplink up to 375kbps, Downlink up to 300kbps
  • NB-IoT – Uplink up to 66kbps, Downlink up to 34kbps
  • EDGE Class – Uplink up to 236.8Kbps, Downlink up to 236.8Kbps
  • GPRS – Uplink up to 85.6Kbps, Downlink up to 85.6Kbps

AI GATEWAY series with Compute Module 4 and Google Coral TPU

New features of Edge TPU brought to ModBerry series

In October 2020, with the release of the latest Compute Module 4 from Rasbperry Pi Foundation, TECHBASE announced an upgraded device from ModBerry 500 series, called ModBerry 500 CM4. Thanks to the high-performance PCI-Express bus introduced in Compute Module 4 and Raspberry Pi community, the device itself presents support for a wide range of new applications, such as use of Google’s Artificial Intelligence modules at ease.

Therefore, TECHBASE designed a new device, called ModBerry AI GATEWAY 9500-CM4, utilizing the vertical format of ModBerry 9500, latest Compute Module 4 and Google’s Coral TPU. Installation-ready AI GATEWAY allows direct application in industrial fields.

TECHBASE’s AI GATEWAY series, world-first industrial gateway utilizing Raspberry Pi Compute Module 4 and Google Coral TPU

AI GATEWAY with Coral TPU enhancement 

Neuron network capabilities enhance CM4-based devices, not only collecting and sending data, but also allows local data change predictions and allows direct management on-site. This feature gives the possibility for various applications, such as data analysing and establishing trends predictions, smart alarms and smart monitoring, local notification control, etc.

Used Edge TPU coprocessor via PCI-Express bus is capable of performing 4 trillion operations per second (TOPS), using 0.5 watts for each TOPS (2 TOPS per watt). Google Coral easily integrates with Raspberry Pi Compute Module in Linux and optionally in Windows with full support of TensorFlow Lite framework and AutoML Vision Edge solution.

TECHBASE’s AI GATEWAY series, world-first industrial gateway utilizing Raspberry Pi Compute Module 4 and Google Coral TPU
TECHBASE’s AI GATEWAY series, world-first industrial gateway utilizing Raspberry Pi Compute Module 4 and Google Coral TPU

AI GATEWAY with available expansion cards 

ModBerry AI GATEWAY 9500-CM4 can be equipped with serial RS-232/485 ports, range of digital and analog I/Os, USB, HDMI and Ethernet. Interfaces can be expanded with additional I/Os and opto-isolation, relays, Ethernet, 1-Wire, CAN, M-Bus Master and Slave, accelerometer, OLED screen and many more features like TPM Security Chip, eSIM and SuperCap backup power support. 

ModBerry AI GATEWAY 9500-CM4 series also offers a standard PCI module support for various wireless communication protocols, such as:

  • GSM modem (4G/LTE and fast 5G modem, interchangeable with Coral TPU)
  • economic NarrowBand-IoT technology
  • LoRa, ZigBee, Sigfox, Wireless M-Bus
  • secondary Wi-Fi/Bluetooth interface or Wi-Fi Hi-Power
  • custom wireless interfaces

ModBerry AI GATEWAY 9500-CM4 availabilityFirst prototypes are being developed, since Compute Module 4 is already available for the purchase. Delivery time for various configurations of AI GATEWAY will be approximately 2 months, depending on the CM4 supply on the market and chosen expansion cards. For more information contact TECHBASE’s Sales Department via email or Live Chat here.

ModBerry 500 with Compute Module 4 available for pre-order

TECHBASE’s ModBerry industrial computer series has received an update to Compute Module 4 and is available for pre-orders. TECHBASE is leading manufacturer of Industrial Raspberry Pi and Industrial Compute Module solutions. ModBerry 500 series is fully compatible with all releases of Compute Module from Rasbperry Pi foundation.

Main features of updated device are:

  • up to 4x faster eMMC Flash with up to 32GB storage
  • up to 2x faster performance of CPU apllications than previous CM3 version
  • up to 8x more RAM (8GB LPDDR4)
  • optional 1Gbit Ethernet interface
  • optional PCIe card support for NVMe SSD drive (via M.2)
  • optional second PCIe support for wireless modem solutions

First orders will be ready with subject to the availability of the CM4 module itself.

Raspberry Pi Compute Module 4 world premiere

Few days ago, Raspberry Foundation announced new member of its family, a Rasbperry Pi Compute Module 4. It’s quite obvious, even from the first look, that the new module is very different from its predecessors. Main difference is a new form factor, leaving DDR2 SODIMM in the past.

The same 64-bit quad-core BCM2711 application processor as in Raspberry Pi 4B, the Compute Module 4 brings higher performance: faster CPU cores, better multimedia, more interfacing capabilities, and, for the first time, a choice of RAM densities and a wireless Wi-Fi and Bluetooth connectivity options.

Compute Module 4 comes in 32 variants. Lite, as always, offers no eMMC memory, a and standard versions come with up to 8GB RAM, 32 eMMC Flash and wireless modem.

New Raspberry Pi Compute Module 4 in new form factor

New features of Compute Module 4

  • 1.5GHz quad-core 64-bit ARM Cortex-A72 CPU as in Raspberry Pi 4 version B
  • 1GB, 2GB, 4GB or 8GB LPDDR4-3200 SDRAM
  • 8GB, 16GB or 32GB eMMC Flash storage for Standard version, Lite version without eMMC
  • Optional 2.4GHz and 5GHz IEEE 802.11b/g/n/ac wireless LAN and Bluetooth 5.0
  • Single-lane PCI Express 2.0 interface
  • Gigabit Ethernet PHY with IEEE 1588 support
  • Dual HDMI interfaces, at resolutions up to 4K
  • 28 GPIO pins, with up to 6 × UART, 6 × I2C and 5 × SPI

Source: https://www.raspberrypi.org/blog/raspberry-pi-compute-module-4/

Raspberry Pi Compute Module 4 premiere a new milestone

UPDATE 22.10.20: ModBerry 500 with Compute Module 4 available for pre-order

TECHBASE’s ModBerry industrial computer series has received an update to Compute Module 4 and is available for pre-orders. TECHBASE is leading manufacturer of Industrial Raspberry Pi and Industrial Compute Module solutions. ModBerry 500 series is fully compatible with all releases of Compute Module from Rasbperry Pi foundation.

Main features of updated device are:

  • up to 4x faster eMMC Flash with up to 32GB storage
  • up to 2x faster performance of CPU apllications than previous CM3 version
  • up to 8x more RAM (8GB LPDDR4)
  • optional 1Gbit Ethernet interface
  • optional PCIe card support for NVMe SSD drive (via M.2)
  • optional second PCIe support for wireless modem solutions

First orders will be ready with subject to the availability of the CM4 module itself.

A day ago, Raspberry Foundation announced new member of its family, a Rasbperry Pi Compute Module 4. It’s quite obvious, even from the first look, that the new module is very different from its predecessors. Main difference is a new form factor, leaving DDR2 SODIMM in the past.

The same 64-bit quad-core BCM2711 application processor as in Raspberry Pi 4B, the Compute Module 4 brings higher performance: faster CPU cores, better multimedia, more interfacing capabilities, and, for the first time, a choice of RAM densities and a wireless Wi-Fi and Bluetooth connectivity options.

Compute Module 4 comes in 32 variants. Lite, as always, offers no eMMC memory, a and standard versions come with up to 8GB RAM, 32 eMMC Flash and wireless modem.

New Raspberry Pi Compute Module 4 in new form factor

New features of Compute Module 4

  • 1.5GHz quad-core 64-bit ARM Cortex-A72 CPU as in Raspberry Pi 4 version B
  • 1GB, 2GB, 4GB or 8GB LPDDR4-3200 SDRAM
  • 8GB, 16GB or 32GB eMMC Flash storage for Standard version, Lite version without eMMC
  • Optional 2.4GHz and 5GHz IEEE 802.11b/g/n/ac wireless LAN and Bluetooth 5.0
  • Single-lane PCI Express 2.0 interface
  • Gigabit Ethernet PHY with IEEE 1588 support
  • Dual HDMI interfaces, at resolutions up to 4K
  • 28 GPIO pins, with up to 6 × UART, 6 × I2C and 5 × SPI

Source: https://www.raspberrypi.org/blog/raspberry-pi-compute-module-4/

Compute Module 4 cutting edge in Industrial IoT

Few months ago IoT Industrial Devices predicted a possible release date for Compute Module 4 in Standard and Lite version:

Upcoming Raspberry Pi Compute Module 4 possible release date
Raspberry Pi release timeline with probable Compute Module 4 release date

First Rasbperry Pi 1B model had it’s analogy in industrial Compute Module 1 after almost 2 years from it’s premiere. Compute Module 2 was probably omitted because the change from RPi1 to RPI2 mainly involved a minor change of the processor (Cortex-A7 900MHz), which was almost immediately replaced with Cortex-A53 1.2GHz in Raspberry Pi 3.

The premiere of Compute Module 3 occured a year after RPI 3 announcement, providing a significant boost of industrial market solutions. Since Raspberry Pi 4 was a great success in 2019, we might see it’s equivalent in industrial series of Raspberry Pi – Compute Module 4. A possible release date of Raspberry Pi’s Compute Module 4 is mid-2020.

Raspberry Pi Compute Module 4 high-density connector

Raspberry Pi is gaining recognition in Industry

Almost a year ago, in the beginning of 2019, Raspberry Pi Foundation presented Raspberry Pi Compute Module 3+, a successor to previous CM3 version of development board, aimed at businesses and industrial users. The Compute Module uses a standard DDR2 SODIMM (small outline dual in-line memory module) form factor. GPIO and other I/O functions are routed through the 200 pins on the board.

Only a few months later, in June 2019, came big premiere of Raspberry Pi 4 Model B, the long-awaited successor of customer RPi3+. With new processor, larger RAM options and many input/output changes, became new standard in small, embedded PC world.

Raspberry Pi Compute Module 3+
Raspberry Pi Compute Module 3+

It seems a matter of time before the Raspberry Pi Compute Module 3+ will get its own successor, probably called Compute Module 4, a new milestone of professional embedded IoT module. What might be the specification of this highly expected development board?

Industrial use of Compute Module

With Compute Module 3+ options from Raspberry Pi, TECHBASE upgraded their ModBerry 500/9500 industrial computers. From now on the ModBerry 500/9500 can be supported with extended eMMC, up to 32GB. Higher memory volume brings new features available for ModBerry series.

 ModBerry 500 with Compute Module 3+
ModBerry 500 with Compute Module 3+

Higher performance of ModBerry 500/9500 with extended eMMC flash memory, up to 32GB , powered by quad-core Cortex A53 processor allows the device to smoothly run Windows 10 IoT Core system, opening up many possibilities for data management, remote control and visualisation.

New Raspberry Pi Compute Module 4 features confirmed

UPDATE 22.10.20: ModBerry 500 with Compute Module 4 available for pre-order

TECHBASE’s ModBerry industrial computer series has received an update to Compute Module 4 and is available for pre-orders. TECHBASE is leading manufacturer of Industrial Raspberry Pi and Industrial Compute Module solutions. ModBerry 500 series is fully compatible with all releases of Compute Module from Rasbperry Pi foundation.

Main features of updated device are:

  • up to 4x faster eMMC Flash with up to 32GB storage
  • up to 2x faster performance of CPU apllications than previous CM3 version
  • up to 8x more RAM (8GB LPDDR4)
  • optional 1Gbit Ethernet interface
  • optional PCIe card support for NVMe SSD drive (via M.2)
  • optional second PCIe support for wireless modem solutions

First orders will be ready with subject to the availability of the CM4 module itself.

According to latest leaks about Compute Module 4 specifiaction and features we can be more than sure that:

  • New Compute Module will feature Wi-Fi and Bluetooth on-board! Raspberry Pi Compute Module series will probably include versions with and without these modems to provide modules for variety of industrial applications.
  • PCI-Express line will be available externally to enable extension support via PCIe
  • Ethernet support will be enabled, most probably 1Gbps, since it is a standard in latest Raspberry Pi 4B.
  • 5x UART will be available to Compute Module 4 users

Official Raspberry Pi’s information about upcoming Compute Module 4

In recent interview with Eben Upton, the CEO of Raspberry Pi Trading, we finally had Raspberry Pi Compute Module 4 release confirmation, probably in 2021. He shared some details about the upcoming CM4 features, such as single-lane NVMe support.

The Raspberry Pi Compute Module, CM4, we will support NVMe to some degree on that,  because of course, it [Raspberry Pi 4] has a PCI Express channel. (…) We have a single lane Gen 2 which is used to supply USB 3.0 on the Raspberry Pi [4]. On the [Compute] Module that would be exposed to the edge connector and we’re likely to support NVMe over that.

Eben Upton, CEO of Raspberry Pi Trading

Raspberry Pi is gaining recognition in Industry

Almost a year ago, in the beginning of 2019, Raspberry Pi Foundation presented Raspberry Pi Compute Module 3+, a successor to previous CM3 version of development board, aimed at businesses and industrial users. The Compute Module uses a standard DDR2 SODIMM (small outline dual in-line memory module) form factor. GPIO and other I/O functions are routed through the 200 pins on the board.

Only a few months later, in June 2019, came big premiere of Raspberry Pi 4 Model B, the long-awaited successor of customer RPi3+. With new processor, larger RAM options and PCIe/NVMe support, CM4 might be a black horse of industrial automation in 2021.

It seems a matter of time before the Raspberry Pi Compute Module 3+ will get its own successor, called Compute Module 4, a new milestone of professional embedded IoT module. What might be the specification of this highly expected development board?

Raspberry Pi Compute Module 3+
Raspberry Pi Compute Module 3+

Raspberry Pi Compute Module 4 probable specification

Compute Module 4 specifications probably will look like these:

  • Broadcom BCM2711, Quad core Cortex-A72 @ 1.5GHz will highly plausible replace previous Broadcom BCM2837B0, Cortex-A53 64-bit SoC @ 1.2GHz,
  • 1GB, 2GB or 4GB LPDDR4-3200 SDRAM will become a standard options, instead of fixed 1GB LPDDR2 SDRAM,
  • PCIe/NVMe support via single lane
  • Current flash memory (eMMC) options: 8GB / 16GB / 32GB from CM3+ will probably stay the same,
  • weight and factor will stay the same, to provide a possibility to upgrade current IoT applications of CM3 and CM3+

With much higher performance, the new Raspberry Pi Compute Module 4 will, for sure, support Gigabit Ethernet, USB 3.0 expansions with PCIe/NVMe single lane. We might even see wider working temperature range, if Raspberry Pi Foundation decides to make some hardware changes, to follow, for example, ESP32 – used in end-point IoT automation.

Industrial use of Compute Module

With Compute Module 3+ options from Raspberry Pi, TECHBASE upgraded their ModBerry 500/9500 industrial computers. From now on the ModBerry 500/9500 can be supported with extended eMMC, up to 32GB. Higher memory volume brings new features available for ModBerry series. Upcoming Raspberry Pi’s Compute Module 4 will be fully compatible with TECHBASE’s ModBerry 500/9500 controllers, oferring extended features.

 ModBerry 500 with Compute Module 3+
ModBerry 500 with Compute Module 3+

Higher performance of ModBerry 500/9500 with extended eMMC flash memory, up to 32GB , powered by quad-core Cortex A53 processor allows the device to smoothly run Windows 10 IoT Core system, opening up many possibilities for data management, remote control and visualisation.

Raspberry Pi Compute Module 4 with PCie/NVMe support next year

UPDATE 22.10.20: ModBerry 500, first industrial computer based on Compute Module 4, available for pre-order

TECHBASE’s ModBerry industrial computer series has received an update to Compute Module 4 and is available for pre-orders. TECHBASE is leading manufacturer of Industrial Raspberry Pi and Industrial Compute Module solutions. ModBerry 500 series is fully compatible with all releases of Compute Module from Rasbperry Pi foundation.

Main features of updated device are:

  • up to 4x faster eMMC Flash with up to 32GB storage
  • up to 2x faster performance of CPU apllications than previous CM3 version
  • up to 8x more RAM (8GB LPDDR4)
  • optional 1Gbit Ethernet interface
  • optional PCIe card support for NVMe SSD drive (via M.2)
  • optional second PCIe support for wireless modem solutions

First orders will be ready with subject to the availability of the CM4 module itself.

Update on Raspberry Pi’s Compute Module 4 features [15.10.2020]

According to latest leaks about Compute Module 4 specifiaction and features we can be more than sure that:

  • New Compute Module will feature Wi-Fi and Bluetooth on-board! Raspberry Pi Compute Module series will probably include versions with and without these modems to provide modules for variety of industrial applications.
  • PCI-Express line will be available externally to enable extension support via PCIe
  • Ethernet support will be enabled, most probably 1Gbps, since it is a standard in latest Raspberry Pi 4B.
  • 5x UART will be available to Compute Module 4 users

Official Raspberry Pi’s information about upcoming Compute Module 4

In recent interview with Eben Upton, the CEO of Raspberry Pi Trading, we finally had Raspberry Pi Compute Module 4 release confirmation, probably in 2021. He shared some details about the upcoming CM4 features, such as single-lane NVMe support.

The Raspberry Pi Compute Module, CM4, we will support NVMe to some degree on that,  because of course, it [Raspberry Pi 4] has a PCI Express channel. (…) We have a single lane Gen 2 which is used to supply USB 3.0 on the Raspberry Pi [4]. On the [Compute] Module that would be exposed to the edge connector and we’re likely to support NVMe over that.

Eben Upton, CEO of Raspberry Pi Trading

First Rasbperry Pi 1B model had it’s analogy in industrial Compute Module 1 after almost 2 years from it’s premiere. Compute Module 2 was probably omitted because the change from RPi1 to RPI2 mainly involved a minor change of the processor (Cortex-A7 900MHz), which was almost immediately replaced with Cortex-A53 1.2GHz in Raspberry Pi 3.

The premiere of Compute Module 3 occured a year after RPI 3 announcement, providing a significant boost of industrial market solutions. Since Raspberry Pi 4 was a great success in 2019, we might see it’s equivalent in industrial series of Raspberry Pi – Compute Module 4. A possible release date of Raspberry Pi’s Compute Module 4 is somewhere inbetween 2020/2021.

Raspberry Pi is gaining recognition in Industry

Almost a year ago, in the beginning of 2019, Raspberry Pi Foundation presented Raspberry Pi Compute Module 3+, a successor to previous CM3 version of development board, aimed at businesses and industrial users. The Compute Module uses a standard DDR2 SODIMM (small outline dual in-line memory module) form factor. GPIO and other I/O functions are routed through the 200 pins on the board.

Only a few months later, in June 2019, came big premiere of Raspberry Pi 4 Model B, the long-awaited successor of customer RPi3+. With new processor, larger RAM options and PCIe/NVMe support, CM4 might be a black horse of industrial automation in 2021.

It seems a matter of time before the Raspberry Pi Compute Module 3+ will get its own successor, called Compute Module 4, a new milestone of professional embedded IoT module. What might be the specification of this highly expected development board?

Raspberry Pi Compute Module 3+
Raspberry Pi Compute Module 3+

Raspberry Pi Compute Module 4 probable specification

Compute Module 4 specifications probably will look like these:

  • Broadcom BCM2711, Quad core Cortex-A72 @ 1.5GHz will highly plausible replace previous Broadcom BCM2837B0, Cortex-A53 64-bit SoC @ 1.2GHz,
  • 1GB, 2GB or 4GB LPDDR4-3200 SDRAM will become a standard options, instead of fixed 1GB LPDDR2 SDRAM,
  • PCIe/NVMe support via single lane
  • Current flash memory (eMMC) options: 8GB / 16GB / 32GB from CM3+ will probably stay the same,
  • weight and factor will stay the same, to provide a possibility to upgrade current IoT applications of CM3 and CM3+

With much higher performance, the new Raspberry Pi Compute Module 4 will, for sure, support Gigabit Ethernet, USB 3.0 expansions with PCIe/NVMe single lane. We might even see wider working temperature range, if Raspberry Pi Foundation decides to make some hardware changes, to follow, for example, ESP32 – used in end-point IoT automation.

Industrial use of Compute Module

With Compute Module 3+ options from Raspberry Pi, TECHBASE upgraded their ModBerry 500/9500 industrial computers. From now on the ModBerry 500/9500 can be supported with extended eMMC, up to 32GB. Higher memory volume brings new features available for ModBerry series. Upcoming Raspberry Pi’s Compute Module 4 will be fully compatible with TECHBASE’s ModBerry 500/9500 controllers, oferring extended features.

 ModBerry 500 with Compute Module 3+
ModBerry 500 with Compute Module 3+

Higher performance of ModBerry 500/9500 with extended eMMC flash memory, up to 32GB , powered by quad-core Cortex A53 processor allows the device to smoothly run Windows 10 IoT Core system, opening up many possibilities for data management, remote control and visualisation.

Raspberry Pi 4 use in Industrial IoT solutions

Every fan of new technologies has heard of small single-board computers (SBC) in the form of Raspberry Pi 4. Raspberry debuted on the market in many different versions, and the current model is Model 4B. A lot of people got infected with it for DIY, programming or Linux. But new board comes with variety of pros and cons, as compared to previous RPi3 versions.

Industrial use of market Raspberry Pi 4 SBCs

A year ago, TECHBASE released an updated version of the ModBerry M500 industrial IoT computer, replacing the aging Raspberry Pi 3 with a 3B+, giving it better performance. With the recent launch of the Raspberry Pi 4, TECHBASE has yet again, announced another upgrade to the M500, which now packs the latest single-board computer.

ModBerry M500 with Raspberry Pi’s 4

ModBerry M500 also utilizes many more SBC platforms, such as Orange Pi, NanoPi and Intel-based UpBoard. Find more information here: https://iiot-shop.com/product/modberry-m-series/

Available open source ventilator projects to help COVID-19 patients

When the news came out that ventilator shortages could be a problem, many saw the need for alternatives to the big manufacturers and rushed to create them. Unlike industrial projects, these projects were open and shared. Currently, Robert Reed and his group are starting to systematically evaluate the ranking of over 80 such open source projects.

Their work is a milestone in public research and development efforts to solve problems. For many ventilator builders, the group recognized the need for independent evaluation and testing of various projects. This control provides important feedback to both designers and future builders. This is a service you can expect from government regulators if they can act very quickly.

Reid and colleagues Geoff Mulligan, Lauria Clarke, Juan E. Villacres Perez and Avinash Baskaran to help to learn about these studies. This includes submission of modular team designs that allow distributed production and unique suggestions for testing and monitoring these systems. This is called VentMon.

Industrial Arduino-like devices as a base of medical equipment?

When industrial IoT devices and edge devices, like medical equipment work together, digital information becomes more powerful. Especially in contexts where you need to collect data in a traditional edge context, or control the servo-motors of a ventilatr. You can then remotely monitor the container using the sensor.

By introducing AI (artificial intelligence) into the device itself, edge computing can also make more context-sensitive, quick decisions at the edge. Data gathered from the sensors can be transferred to the cloud at any time after local work has been completed, contributing to a more global AI process, or archived. With the combination of industrial IoT devices and advanced technology, high quality analysis and small footprint will become the AI standard in 2020.

Industrial IoT use of ESP32 chip in eModGATE

Latest innovations used in industrial solutions

One of many uses of IoT can be edge devices, dedicated to data management, process control (e.g. with MQTT protocol) and monitoring. Latest ESP32-based eModGATE controller from TECHBASE company is a series utilizing MicroPython environment to provide data management solutions for end-points applications. The eModGATE has built-in Wi-Fi/BT modem and can be equipped with additional NarrowBand-IoT, LoRa, ZigBee, etc.

For example eModGATE eqipped with wireless NB-IoT modem are perfect for industrial automation solutions, e.g. data logging, metering, telemetrics, remote monitoring, security and data management through all Industrial IoT applications.