Posts

Raspberry Pi Compute Module 4 with PCie/NVMe support next year

In recent interview with Eben Upton, the CEO of Raspberry Pi Trading, we finally had Raspberry Pi Compute Module 4 release confirmation, probably in 2021. He shared some details about the upcoming CM4 features, such as single-lane NVMe support.

The Raspberry Pi Compute Module, CM4, we will support NVMe to some degree on that,  because of course, it [Raspberry Pi 4] has a PCI Express channel. (…) We have a single lane Gen 2 which is used to supply USB 3.0 on the Raspberry Pi [4]. On the [Compute] Module that would be exposed to the edge connector and we’re likely to support NVMe over that.

Eben Upton, CEO of Raspberry Pi Trading

First Rasbperry Pi 1B model had it’s analogy in industrial Compute Module 1 after almost 2 years from it’s premiere. Compute Module 2 was probably omitted because the change from RPi1 to RPI2 mainly involved a minor change of the processor (Cortex-A7 900MHz), which was almost immediately replaced with Cortex-A53 1.2GHz in Raspberry Pi 3.

The premiere of Compute Module 3 occured a year after RPI 3 announcement, providing a significant boost of industrial market solutions. Since Raspberry Pi 4 was a great success in 2019, we might see it’s equivalent in industrial series of Raspberry Pi – Compute Module 4. A possible release date of Raspberry Pi’s Compute Module 4 is somewhere inbetween 2020/2021.

Raspberry Pi is gaining recognition in Industry

Almost a year ago, in the beginning of 2019, Raspberry Pi Foundation presented Raspberry Pi Compute Module 3+, a successor to previous CM3 version of development board, aimed at businesses and industrial users. The Compute Module uses a standard DDR2 SODIMM (small outline dual in-line memory module) form factor. GPIO and other I/O functions are routed through the 200 pins on the board.

Only a few months later, in June 2019, came big premiere of Raspberry Pi 4 Model B, the long-awaited successor of customer RPi3+. With new processor, larger RAM options and PCIe/NVMe support, CM4 might be a black horse of industrial automation in 2021.

It seems a matter of time before the Raspberry Pi Compute Module 3+ will get its own successor, called Compute Module 4, a new milestone of professional embedded IoT module. What might be the specification of this highly expected development board?

Raspberry Pi Compute Module 3+
Raspberry Pi Compute Module 3+

Raspberry Pi Compute Module 4 probable specification

Compute Module 4 specifications probably will look like these:

  • Broadcom BCM2711, Quad core Cortex-A72 @ 1.5GHz will highly plausible replace previous Broadcom BCM2837B0, Cortex-A53 64-bit SoC @ 1.2GHz,
  • 1GB, 2GB or 4GB LPDDR4-3200 SDRAM will become a standard options, instead of fixed 1GB LPDDR2 SDRAM,
  • PCIe/NVMe support via single lane
  • Current flash memory (eMMC) options: 8GB / 16GB / 32GB from CM3+ will probably stay the same,
  • weight and factor will stay the same, to provide a possibility to upgrade current IoT applications of CM3 and CM3+

With much higher performance, the new Raspberry Pi Compute Module 4 will, for sure, support Gigabit Ethernet, USB 3.0 expansions with PCIe/NVMe single lane. We might even see wider working temperature range, if Raspberry Pi Foundation decides to make some hardware changes, to follow, for example, ESP32 – used in end-point IoT automation.

Industrial use of Compute Module

With Compute Module 3+ options from Raspberry Pi, TECHBASE upgraded their ModBerry 500/9500 industrial computers. From now on the ModBerry 500/9500 can be supported with extended eMMC, up to 32GB. Higher memory volume brings new features available for ModBerry series. Upcoming Raspberry Pi’s Compute Module 4 will be fully compatible with TECHBASE’s ModBerry 500/9500 controllers, oferring extended features.

 ModBerry 500 with Compute Module 3+
ModBerry 500 with Compute Module 3+

Higher performance of ModBerry 500/9500 with extended eMMC flash memory, up to 32GB , powered by quad-core Cortex A53 processor allows the device to smoothly run Windows 10 IoT Core system, opening up many possibilities for data management, remote control and visualisation.

COVID-19 monitoring set based on Raspberry Pi

COVID-19 monitoring set based on Raspberry Pi

Raspberry Pi devices are often used by scientists, especially for capturing and analyzing biological data. A particularly noteworthy sober project has published news this week.

According to the researchers at UMass Amherst, FluSense is about the size of a dictionary. Includes an inexpensive microphone set, heat sensor, Raspberry Pi and Intel Movidius 2 neural engine. The idea is to use AI on the edge to classify audio samples and determine the number of people in a room at any given time.

Image courtesy of the University of Massachusetts Amherst

We believe that FluSense has the potential to expand the arsenal of health surveillance tools used to forecast seasonal flu and other viral respiratory outbreaks, such as the COVID-19 pandemic or SARS,” Rahman told TechCrunch. “By understanding the ebb and flow of the symptoms dynamics across different locations, we can have a better understanding of the severity of a novel infectious disease and that way we can enforce targeted public health intervention such as social distancing or vaccination.

Source: https://www.networkworld.com/article/3534101/covid-19-vs-raspberry-pi-researchers-bring-iot-technology-to-disease-detection.html

Crowd monitoring with Raspberry Pi

The device distinguishes cough from other sounds. By combining cough data with information about the size of the crowd at your location, you can get an index that predicts the number of people who may be experiencing flu symptoms.

Currently we are planning to deploy the FluSense system in several large public spaces (e.g., large cafeteria, classroom, dormitories, gymnasium, auditorium) to capture syndromic signals from a broad range of people who live in a certain town or city,” they said. “We are also looking for funding to run a large-scale multi-city trial. In the meantime, we are also diversifying our sensing capability by extending FluSense’s capability to capture more syndromic signals (e.g., recently we added sneeze sensing capability to FluSense). We definitely see a significant level of commercialization potential in this line of research.

https://www.raspberrypi.org/blog/flusense-takes-on-covid-19-with-raspberry-pi/
Raspberry Pi Compute Module 4

Raspberry Pi Compute Module 4 coming soon? Check possible specification.

It seems a matter of time before the Raspberry Pi Compute Module 3+ will get its own successor, probably called Compute Module 4, a new milestone of professional embedded IoT module

Possible Raspberry Pi Compute Module 4 specification

  • Broadcom BCM2711, Quad core Cortex-A72 @ 1.5GHz will highly plausible replace previous Broadcom BCM2837B0, Cortex-A53 64-bit SoC @ 1.2GHz,
  • 1GB, 2GB or 4GB LPDDR4-3200 SDRAM will become a standard options, instead of fixed 1GB LPDDR2 SDRAM,
  • Current flash memory (eMMC) options: 8GB / 16GB / 32GB from CM3+ will probably stay the same,
  • H.265 (4kp60 decode), H264 (1080p60 decode, 1080p30 encode) might replace outdated H.264 (1080p30),
  • and OpenGL ES 3.0 graphics will replace 1.1, 2.0 versions,
  • weight and factor will stay the same, to provide a possibility to upgrade current IoT applications of CM3 and CM3+

A Lite 4 version of Compute Module is to be expected too, without eMMC and probably limited SDRAM options.

Rasbperry Pi Compute Module 3+

ModBerry, the first Industrial Raspberry Pi application

With Compute Module 3+ options from Raspberry Pi, TECHBASE upgraded our ModBerry 500/9500 industrial computers. From now on the ModBerry 500/9500 can be supported with extended eMMC, up to 32GB. Higher memory volume brings new features available for ModBerry series.

ModBerry 500 M3 with Raspberry Pi Compute Module 3 out now!

We are proud to announce that our newest device ModBerry 500 M3 is now available to order. ModBerry 500 M3 is an upgraded ModBerry 500 industrial computer series, using latest Compute Module 3 from Raspberry Pi. Used module increase the device’s performance up to ten times, maintaining low power consuption and optimal price of this solution. ModBerry features industrial protocol support, e.g. Modbus, M-Bus, SNMP, MQTT and more. Read full specification in ModBerry 500 M3 datasheet below:

Main features of ModBerry 500 M3:

  • Quad core Cortex A53 processor @ 1.2 GHz with Videocore IV GPU
  • 1GB LPDDR2 RAM
  • 4GB eMMC Flash
  • Full Modbus/M-Bus/SNMP/MQTT protocol support
  • Wide range of wired and wireless communication protocols (Wi-Fi, 3G/LTE, GPS, Bluetooth, ZigBee, etc.)
  • Industrial-grade components and casing with DIN rail mounting

Watch ModBerry website for upcoming news and updates. More industrial solutions coming in 2017!

Compute Module 3 Technical Specification Released

Compute Module 3 (CM3) and Compute Module 3 Lite (CM3L) Technical Specification Released!

There will be two version of the Compute Module 3:  CM3 with a 4GB eMMC, and CM3 Lite without eMMC, but SD card signal are available to the baseboard.
Apart from this difference, both modules shares the same specs:

SoC
Broadcom BCM2837 quad core Cortex A53 processor @ 1.2 GHz with Videocore IV GPU

System Memory
1GB LPDDR2

Storage

  • CM3 Lite – SD card signals through SO-DIMM connector
  • CM3 – 4GB eMMC flash

200-pin edge connector with:

  • 48x GPIO
  • 2x I2C, 2x SPI, 2x UART
  • 2x SD/SDIO, 1x NAND interface (SMI)
  • 1x HDMI 1.3a
  • 1x USB 2.0 HOST/OTG
  • 1x DPI (Parallel RGB Display)
  • 1x 4-lane CSI Camera Interface (up to 1Gbps per lane), 1x 2-lane CSI Camera Interface (up to 1Gbps per lane)
  • 1x 4-lane DSI Display Interface (up to 1Gbps per lane), 1x 2-lane DSI Display Interface (up to 1Gbps per lane)

Power Supply
VBAT (2.5V to 5.0V) for BCM2837 processor core, 3.3V for PHYs, UI and eMMC flash, 1.8V for PHYs, IO, and SDRAM, VDAC (2.8V typ.) for video composite DAC, GPIO0-27_VREF & GPIO28-45_VREF (1.8 to 3.3V) for the two GPIO banks.

Dimensions
67.6 x 31 mm; compliant with JEDEC MO-224 mechanical specification used in DDR2 SO-DIMM memory module

Temperature Range
-25 to +80 degrees Celsius

Compute Module 3 and 3 Lite are electrically & mechanically compatible with the original Raspberry Pi Compute Module (CM1), so ModBerry 500 / NPE X500 will gain exra performance.

Following differences explained in the datasheet:

“Apart from the CPU upgrade and increase in RAM the other significant hardware differences to be aware of are that CM3 has grown from 30mm to 31mm in height, the VBAT supply can now draw significantly more power under heavy CPU load, and the HDMI HPD N 1V8 (GPIO46 1V8 on CM1) and EMMC EN N 1V8 (GPIO47 1V8 on CM1) are now driven from an IO expander rather than the processor. If a designer of a CM1 product has a suitably specified VBAT, can accommodate the extra 1mm module height increase and has followed the design rules with respect to GPIO46 1V8 and GPIO47 1V8 then a CM3 should work fine in a board designed for a CM1.”

You can download official Data Sheet here:

Compute Moule 3 Size

Compute Module 3 – Size confirmed!

We have got confirmation about size of the Raspberry Pi Compute Module 3.

User “6by9” claimed to be a Raspberry Pi Technican, wrote that he already have a piece of Compute Module 3, and confirms that it has the same size / dimensions as current generation module.

Compute Module 3 size confirmed

Compute Module 3 size confirmed

Link to the topic.

 

 

Compute Module 3

Raspberry Pi 3 Compute Module

The Raspberry Pi foundation has announced new product –  Raspberry Pi 3 Compute Module.

At the blog post “RASPBERRY PI 3 ON SALE NOW AT $35” from 29th Feb 2016, Eben Upton wrote that Compute Module 3 should be ready soon. We contacted directly with the foundation in this case, also asking whether it will be possible to obtain or purchase samples before the premiere. We received the following information:

 

Thank you for your interest in Raspberry Pi.

We expect the Compute Module 3 to be available within the next couple of months. Please keep an eye on our blog for announcements.

We do not send samples of our products.

Regards

Nicola Early
Administrator