Posts

Raspberry Pi sales rise during coronavirus pandemic

In March, sales of Raspberry Pi single-board computers totaled 640,000. The consumer find it the cheapest way to start tinkering and drove to the second-largest sales month since Raspberry Foundation began selling for home use.

Other uses of Raspberry Pi computers are more directly associated with the appearance of COVID-19. For example, in Colombia, efforts are underway to run a ventilator on a Pi computer, and if successful, it will help solve the problem of the lack of traditional ventilation equipment in this country.

I think what this is telling us is that we’re seeing genuine consumer use of the product. It’s not like your desktop PC – you’re not going to be able play Crysis on it – but if you want a machine you can use to edit documents, use the web, use Gmail and Office 365 and all the baseline use cases of a general purpose computer, the Raspberry Pi 4 is a product we’ve made to get over that bar.

Eben Upton, the Raspberry Pi’s co-creator for Techrepublic

When the Raspberry Pi Foundation asked to talk about how to deal with COVID-19 using Raspberry Pi devices, one of the most common uses he saw was 3D printing with use of Raspberry Pi, especially for 3d-printed faceshields.

Raspberry Pi 4
Raspberry Pi 4

Arduino-based ventilator to help coronavirus patients

A month ago we wrote about Arduino-based solution, similar to the one tested in Columbia. As far as manufacturing and using home-made medical equipment is not advised, the spread of the COVID-19 might push humanity to such solutions. Johnny Lee’s project involves a simple, low-cost ventilator controlled via Arduino.

The idea is that since these machines are basically just blowers controlled by a brushless DC motor, an Arduino Nano equipped with an electonic speed controller could allow it to act as a one. Such a setup has been shown to provide more than enough pressure for a ventilator used on COVID-19 patients. This device has in no way been evaluated or approved for medical use, but it does provide a starting point for experimentation.

Source: https://blog.arduino.cc/2020/03/17/designing-a-low-cost-open-source-ventilator-with-arduino/

New #CoronaIOT initiative from Industrial IoT manufacturer

Trends indicate a weakening of many sectors of the economy, including the IoT sector. However, we can prevent the upcoming crisis with products and technology keeping up with the inevitable changes in our daily lives.

TECHBASE Group took the challenge of gathering potential partners for projects that serve improvement of health safety and worldwide trend of Social Distancing. The program will periodically present new IoT projects, involving manufacturers, software and hardware developers, new technology influencers and media.

Industrial Raspberry Pi powered devices as a base of medical equipment?

When industrial IoT devices and edge devices, like medical equipment work together, digital information becomes more powerful. Especially in contexts where you need to collect data in a traditional edge context, or control the servo-motors of a ventilator. You can then remotely monitor the container using the sensor.

By introducing AI (artificial intelligence) into the device itself, edge computing can also make more context-sensitive, quick decisions at the edge. Data gathered from the sensors can be transferred to the cloud at any time after local work has been completed, contributing to a more global AI process, or archived. With the combination of industrial IoT devices and advanced technology, high quality analysis and small footprint will become the AI standard in 2020.

ModBerry M500 with Raspberry Pi’s 4 on-board

SuperCap UPS – Backup power supply for Raspberry Pi / ESP32 IIoT devices

The new SuperCap UPS-SC01 backup power supply is equipped with a highly available backup feature to safely bridge fluctuations, drops or failures accompanying standard 9~30VDC supply voltage and avoid interruption of output voltage in industrial and automation environments. For this purpose SuperCap UPS-SC01 utilizes two supercapacitors (so-called supercaps) as a durable, cycle-resistant and maintenance-free solution for backup energy storage and failure safety.

As an addition to Industrial IoT family of TECHBASE’s products, such as ModBerry (Raspberry Pi Compute Module 3 powered) industrial gateways and Moduino (ESP32 powered) end-point devices, the SuperCap UPS-SC01 serves well as an additional, highly efficient and fanless power source to allow continuous operation of connected devices in difficult conditions, such as extended industrial temperature range. Perfect solution for a multi-range applications, especially for embedded IIoT / Industry 4.0 systems, where stability and high availability is most important.

Read more

M-Bus/Wireless M-Bus support for Moduino X1/X2

Moduino based on ESP32 can now be equipped with TECHBASE’s original mBus10/60/400 converter module. The converter operates as a M-Bus Master and allows user to connect up to 400 standard M-Bus receivers (Slaves) through M-Bus Master output or fewer devices at a higher M-Bus load over long distances. Moduino, as a fully capable Industrial IoT device, can now be used with every device equipped with M-Bus interface, e.g. heat meters, electricity meters, gas meters, executive modules, recorders, measuring instruments.

Wireless M-Bus support

TECHBASE has added high performance module for wireless M-Bus connectivity and multi-hop networking into Moduino series expansion options. The module is configured as an embedded micro system or simple data modem for low power applications in the metering specifically allocated band of 169 MHz or in the ISM band of 868 MHz. The device is can be configured for interoperability in a WMBus network for Industrial IoT applications.

The RF implementation guarantees best-in-class performance in terms of covered area and power consumption. The output power can be increased up to +30 dBm on the 169 MHz band (+27 dBm on optimized version for highest power efficiency) and up to +15 dBm on the 868 MHz band. The extremely reduced power consumption gives access to long lasting battery life requirement (up to 2 μA in sleep mode for wireless M-Bus module with an RTC clock running).

The Moduino devices  can be provided with a W-MBus stack specifically developed by Embit for the platform that allows to integrate the module in the desired system without effort and simplify the interaction in WMBus networks.

 

First industrial gateways series based on new ESP32 chips

The newest addition to TECHBASE’s Industrial IoT Ecosystem is a lightweight, but powerful energy-efficient and fully capable automation controller series, called Moduino – an industrial computer for remote data control and management, equipped with latest ESP32 compute module, wide range of serial, digital and analog inputs/outputs and wireless communication interfaces. This cost effective solution is perfect for end-point devices.

Moduino is powered by ultra-low power Dual-Core Tensilica LX6 240 MHz processor with 512KB RAM (up to 4MB) and 4MB SPI flash memory on-board. Integrated Wi-Fi/BLE modem and extra wireline/wireless interfaces make the Moduino micro-computer a versatile addition to Industrial IoT solutions offered by TECHBASE company. For more complex installations and for those, who need high integration capabilities, the Moduino devices can easily work remotely with existing ModBerry gateway for data accumulation and monitoring, to perform specific actions before sending the data to cloud services. The Moduino-ModBerry installation can work as standalone Ecosystem (for example via MQTT), providing fog-computing to any installation.

Wireless solution

Both Moduino X1 & X2 offer built-in Wi-Fi & Bluetooth 4.2 and support for LoRa, Sigfox, LTE cat. M1, NarrowBand-IoT (LTE cat. NB1) modems. Currently the support of ZigBee modems is under development. Moduino is equipped with standard U.FL (IPEX) external antenna connectors, allowing the device to reach up to 1km range (for Wi-Fi modem) and expanding the range for other wireless interfaces.

Battery and AC powered

Two multi-sized units X1 and X2 represent diversified approach to IIoT installations for remote data access & management. The main difference between Moduino X1 and it’s larger brother Moduino X2, apart from size, is a battery power support for X1 due to lower energy demand, making it independent from local power grid – perfect for remote installations and scattered objects monitoring. Both solutions can be powered by regular power supply with UPS support (LiPo & Supercapacitor batteries), offer wide range of serial, digital and analog inputs/outputs assisted with support of wireless communication interfaces.

Operating systems & software

Use of ESP32-WROVER compute module adds the support for real-time operating systems (compared to most Raspberry Pi based Linux and Windows OS versions), and openness of the Espressif’s platform to Moduino industrial automation controller. Thanks to enormous community of ESP32 and Arduino users and developers, the Moduino can now adapt existing software solutions, tools and programming environments,  for example:

  • ESP-IDF (Espressif IoT Development Framework)
  • Zephyr Project (scalable RTOS)
  • Arduino (C++)
  • MicroPython
  • Mongoose OS
  • etc.

End-point sensors

The Moduino device is a comprehensive end-point controller for variety of sensors located throughout any installation. It fully supports temperature and humidity sensors and new ones are currently developed, e.g. accelerometer, gyroscope, magnetometer, etc.