One way of long-range and low-power data transmission is LoRa wireless technology. Since the Internet of Things market (with ESP32 – based solutions) is mainly covered with short-range Wi-Fi and Bluetooth and long-range with 3G / NarrowBand-IoT technologies, LoRa oftens is omitted or simply unknown by IoT users. Below you will find a short representation of what LoRa is and how can it be used.
What is LoRa / LoRAWAN network?
LoRaWAN® network architecture is deployed in a star-of-stars topology in which gateways relay messages between end-devices and a central network server. The gateways are connected to the network server via standard IP connections and act as a transparent bridge, simply converting RF packets to IP packets and vice versa. The wireless communication takes advantage of the Long Range characteristics of the LoRa physical layer, allowing a single-hop link between the end-device and one or many gateways. All modes are capable of bi-directional communication, and there is support for multicast addressing groups to make efficient use of spectrum during tasks such as Firmware Over-The-Air (FOTA) upgrades or other mass distribution messages.
One of industrial IoT devices, supporting LoRa wireless technology is ESP32 based eModGATE from TECHBASE. Economical, ESP32-based solution can serve as an end-point in any installation or works well as a gateway, gathering data from scattered sensor mesh across the installation. For more information and also Raspberry Pi based solutions check Industrial IoT Shop with all the configuration options for eModGATE.
Recently TECHBASE introduced ClusBerry, an industrial Raspberry Pi based cluster device, utilizing up to 8x Raspberry Pi Compute Module 4 and custom cluster board with a wide range of configuration possibilities.
For smaller projects and IoT prototyping, the company designed a smaller and ready-to-deploy cluster device including two independent ModBerry I/O mainboards and two Compute Module 4’s. The ClusBerry-2M offers similar resources as double ModBerry 500-CM4 with software cluster management tools – Docker and K3s Lightweight Kubernetes solutions.
Each module can perform various tasks, from standard I/O gateway, wireless modem, Gigabit LAN router to NAS file server and AI Gateway with Google Coral Edge TPU modules. You can manage your cluster modules at ease, boot modules from one to another, upgrade firmware crosswise and provide safe operation of each module. The modules are connected to each other to provide such features and allow quick healing of the dual cluster.
New features of multiple Compute Modules 4 brought to new ClusBerry series
Fully configurable devices are something desirable in the IoT market, where high performance and low cost is a key factor to success of implementation. TECHBASE’s Industrial IoT Ecosystem gives the opportunity to adjust ordered devices with certain resources and cut unnecessary I/Os, lowering the total cost of the device.
Various implementations must have guaranteed high hardware performance to react fast enough in real time. For this purpose, the arrays of processor blocks are constructed to be assigned to individual tasks. For several years now, attempts have been made to use various types of SBC for this purpose, including, of course, Raspberry Pi.
Reason for use of CM4 cluster in ClusBerry-2M
The introduction of new Compute Module 4 has opened the possibility to construct and maintain effective hardware matrix solutions with the use of both PCI-Express buses and 1GBps Ethernet. Therefore, the ClusBerry-2M opens up completely new capabilities of utilizing cluster solutions for Industrial Automation and server applications.
ClusBerry-2M can be equipped with multiple expansion cards, e.g. serial RS-232/485 ports, range of digital and analog I/Os, USB, HDMI and Ethernet. Interfaces can be expanded with additional I/Os and opto-isolation, relays, Ethernet, 1-Wire, CAN, M-Bus Master and Slave, accelerometer and many more features like TPM Security Chip & eSIM. The device can also be equipped with additional SuperCap backup power source for continuous work and safe boot/shutdown in case of emergency.
ClusBerry-2M series also offers two M.2 NVMe SSD slots and up to four standard miniPCIe module support for various wireless communication protocols, such as:
GSM modem (4G/LTE and fast 5G modem)
economic NarrowBand-IoT technology
LoRa, ZigBee, Z-Wave, Sigfox, Wireless M-Bus
secondary Wi-Fi/Bluetooth interface or Wi-Fi Hi-Power
custom wireless interfaces
Software cluster management with Docker and K3s Lightweight Kubernetes
With use of Docker-based and Kubernetes solutions, installation and management of ClusBerry-2M is easy and backed with a large community for further support and development. Kubernetes is a portable, extensible open-source software platform for managing containerized tasks and sites that enables declarative configuration and automation. The Kubernetes ecosystem is large and dynamically developing. Kubernetes services, support and tools are widely available.
Kubernetes provides:
Detection of new services and traffic. Kubernetes can balance the load and redirect the network traffic to ensure the stability of the entire installation.
Kubernetes data storage management enables you to automatically mount any type of storage system – on-premises, from cloud providers and others.
Automatic deployment and rollback. You can describe the expected state of your installation with Kubernetes, which will take care of bringing the actual state to the expected state in a controlled manner. For example, with Kubernetes, you can manage your cluster modules at ease, boot modules from one to another, upgrade firmware crosswise and provide safe operation of each module.
Automatic management of available resources. ClusBerry-2M provides a cluster of modules that Kubernetes can use to run tasks in containers. You determine the CPU power and RAM requirements for each container. Kubernetes arranges containers on machines in such a way as to make the best use of provided resources.
Self-healing Kubernetes reboots containers that have stopped working, replaces them with new ones, forces disabling containers that are not responding to certain status queries, and does not announce their availability until they are ready to run.
Managing confidential information and Kubernetes configuration with TPM Security Chip allows you to store and manage confidential information such as passwords, OAuth tokens and SSH keys. Secured data and configuration information can be provided and changed without having to rebuild the container image and without exposing sensitive data in the overall software configuration.
ClusBerry-2M availability
Basic version of ClusBerry-2M is available in 2-4 weeks. Delivery time for various configurations of ClusBerry-2M including ExCard modules and modems can be approximately 2 months, depending on the CM4 supply on the market and chosen expansion cards. For more information please contact via our website and sign the offer here: https://clusberry.techbase.eu/
https://modberry.techbase.eu/wp-content/uploads/2021/05/dual-cm4-cluster.png518800adminhttps://modberry.techbase.eu/wp-content/uploads/2017/01/modberry_logo.pngadmin2022-03-05 10:34:372022-05-10 09:55:20Dual Raspberry Pi Compute Module 4 Cluster for Industrial IoT
As the remote application market is growing rapidly, technology also needs to progress, ensuring greater range and transmission speed while reducing energy consumption. Technological progress makes it possible to create innovative standards for new, sophisticated applications that facilitate our life and work. One of wireless connection choices can be LoRa technogoly.
What exactly is LoRaWAN?
LoRa (Long Range Radio) technology with low data throughput allows IoT and M2M applications to communicate wirelessly over 15 kilometers, with a battery life of more than 10 years. LoRa allows you to connect millions of wireless nodes with compatible gateways and has several key advantages over other wireless solutions. For example, it uses spectrum spreading modulation with the ability to demodulate a signal 20 dB below the noise level.
LoRa uses license-free sub-gigahertz radio frequency bands like 433 MHz, 868 MHz (Europe) and 915 MHz (Australia and North America). LoRa enables long-range transmissions (more than 10 km in rural areas) with low power consumption.[4] The technology is presented in two parts: LoRa, the physical layer and LoRaWAN (Long Range Wide Area Network), the upper layers.
Compared to 3G and 4G cellular networks, LoRa technology is also better scalable and more cost-effective for embedded applications. It has a much greater range than other popular wireless protocols, which allows devices to operate without amplifiers, reducing the total cost of the application.
Thanks to scalability, reliable communication, mobility and ability to work in difficult external conditions, the LoRa module is perfectly suited for use in a wide range of wireless monitoring and control applications that do not require high transmission speeds. Examples of applications may include smart city (street lighting sensors, motion sensors), energy (intelligent measurement of electricity / water / gas consumption) and industrial / commercial / home applications, among others HVAC, intelligent devices, security systems and lighting.
Use of LoRa in industrial automation
Use of wireless connection makes life and work easier for us every day – from radio stations and GSM to Wi-Fi wireless networks, Zigbee, short-range Bluetooth connectivity and LoRa. With the spread of internet access, the possibility of using wireless connectivity for a new type of service and application has opened. Terminology such as M2M (Machine to Machine) – remote communication between devices and IoT – a network of applications and devices communicating with the Internet have been created.
Device equipped with LoRa module is delivered with a LoRaWAN protocol stack, so it can be easily connected to the existing, fast-growing LoRa Alliance infrastructure – both in privately managed local area networks (LAN) and public telecommunications networks to create wide area low power WAN (LPWAN) on a national scale. LoRaWAN stack integration also allows connection to any microcontroller, such as LoRa Gateway from TECHBASE.
https://modberry.techbase.eu/wp-content/uploads/2021/03/lora-gateway.png900900adminhttps://modberry.techbase.eu/wp-content/uploads/2017/01/modberry_logo.pngadmin2022-02-24 10:49:482022-05-10 09:55:37Industrial Raspberry Pi with LoRa support is a must
Industrial Computer powered with Raspberry Pi Compute Module 4 which you can easily adapt to your needs. Upgraded ModBerry 500 CM4 series use latest Processor Module, powered by Quad-core Cortex-A72 1.5GHz processor, 1/2/4/8GB LPDDR4 RAM and up to 32GB eMMC on-board. ModBerry optionally features wide range of additional I/Os, such as Digital and Analog Inputs/Outpus, Serial Ports, Ethernet, CAN and wireless modems.
ExCard modules to peak the performance
Every TECHBASE’s industrial computer is supported by ExCard add-on modules for extra RS-232/485 serial ports, Ethernet ports, PCIe slots, analog input and output, digital I/Os, relays, M-Bus interface, opto-isolation, accelerometer, etc. To provide specific communication paths, ModBerry can be rigged with additional Wi-Fi/Bluetooth module, 3G/LTE, NarrowBand-IoT, LoRa, ZigBee, GPS and Wireless M-Bus.
The latest options for ModBerry series are:
SuperCap expansion, to provide constant power supply as a UPS option
OLED 0.96” & new OLED 1,3″ screen, allowing the control without the need of connecting into the device
ESP32 module as a security chip, to add a firewall into control installation and ensure constant operation of the device, even with power drops and random events
Aluminum case, to grant much higher durability for extra harsh industrial conditions
M.2 NVMe SSD controller for extra data storage
https://modberry.techbase.eu/wp-content/uploads/2021/04/cm4-relay.png518800adminhttps://modberry.techbase.eu/wp-content/uploads/2017/01/modberry_logo.pngadmin2022-02-19 10:16:002023-03-03 14:56:42Latest Raspberry Pi CM4 device with relay expansion
TECHBASE’s ModBerry industrial computer series has received an update to Compute Module 4 and is available for pre-orders. TECHBASE is leading manufacturer of Industrial Raspberry Pi and Industrial Compute Module solutions. ModBerry 500 series is fully compatible with all releases of Compute Module from Rasbperry Pi foundation.
Main features of updated device are:
up to 4x faster eMMC Flash with up to 32GB storage
up to 2x faster performance of CPU apllications than previous CM3 version
up to 8x more RAM (8GB LPDDR4)
optional 1Gbit Ethernet interface
optional PCIe card support for NVMe SSD drive (via M.2)
optional second PCIe support for wireless modem solutions
First orders will be ready with subject to the availability of the CM4 module itself.
Few days ago, Raspberry Foundation announced new member of its family, a Rasbperry Pi Compute Module 4. It’s quite obvious, even from the first look, that the new module is very different from its predecessors. Main difference is a new form factor, leaving DDR2 SODIMM in the past.
The same 64-bit quad-core BCM2711 application processor as in Raspberry Pi 4B, the Compute Module 4 brings higher performance: faster CPU cores, better multimedia, more interfacing capabilities, and, for the first time, a choice of RAM densities and a wireless Wi-Fi and Bluetooth connectivity options.
Compute Module 4 comes in 32 variants. Lite, as always, offers no eMMC memory, a and standard versions come with up to 8GB RAM, 32 eMMC Flash and wireless modem.
New features of Compute Module 4
1.5GHz quad-core 64-bit ARM Cortex-A72 CPU as in Raspberry Pi 4 version B
1GB, 2GB, 4GB or 8GB LPDDR4-3200 SDRAM
8GB, 16GB or 32GB eMMC Flash storage for Standard version, Lite version without eMMC
Optional 2.4GHz and 5GHz IEEE 802.11b/g/n/ac wireless LAN and Bluetooth 5.0
Single-lane PCI Express 2.0 interface
Gigabit Ethernet PHY with IEEE 1588 support
Dual HDMI interfaces, at resolutions up to 4K
28 GPIO pins, with up to 6 × UART, 6 × I2C and 5 × SPI
https://modberry.techbase.eu/wp-content/uploads/2020/10/modberry500-cm4.png900900adminhttps://modberry.techbase.eu/wp-content/uploads/2017/01/modberry_logo.pngadmin2021-12-22 09:55:592022-05-10 09:56:20Compute Module 4-based industrial controller available for purchase
TECHBASE company designed an extended version of Raspberry Pi Compute Module 4 based devices, ModBerry 500-CM4-PM series for better power management in changing conditions of industrial applications. With the use of GPIO the module can manage boot, sleep mode or safe shutdown of the device in terms of unexpected drop in the power network with help of built-in ESP32 module and Arduino environment.
In the last few years developers marketed a wide range of ARM-based development boards, lacking in enhanced power management, especially sleep and wake up modes, commonly used in PC-grade computing. These boards are not adjusted for battery power supply, so it’s natural that sleep/wake functions should be implemented. In connection with the development of solutions based on Linux-SBC, key factor is adding sleep modes to any remote installation
ESP32 based addon module for Raspberry Pi
With built-in algorithms and the possibility to program on your own, the TECHBASE’s sleep/wake addon module can wake the device using a scheduler/timer. The module itself is based on ESP32-WROVER, used in the Moduino X series. ESP32 as a lightweight and low-powered solution is a perfect aid system for Raspberry Pi. Another option is wake on external triggers, e.g. change of input state, etc. All the options for sleep, shutdown and wake can be configured for various scenarios to ensure constant operation of devices, safety of data and continuity of work in case of power failure in any installation.
Sleep mode with additional power backup
Additional power management option for ModBerry devices is sleep functionality enhanced with SuperCap UPS energy backup device. This solution allows programming scenarios including the execution of chosen actions, in order to save data, send a notification and restart/shutdown the controller after completion.
Advanced power management solution
Most advanced configuration includes use of ESP32 module, known from the successful, lightweight Moduino X series, for extra logic for wake up / sleep scripts. This addon will allow the RaspberryPi-based ModBerry device to be woken up by the internal ESP32 controller.
Moduino-ModBerry symbiosis allows a wide range of wake-up/sleep schedule customization, in order to perform best and save energy according to power supply state. Arduino and MicroPython environments provide libraries to control different scenarios of data and power management.
ModBerry 500-CM4-PM availability
The preliminary ModBerry 500-CM4-PM devices are available on request and delivery time will be specified by the Sales Dept. depending on the size of the project. Contact via email or Live Chat here: https://iiot-shop.com/
https://modberry.techbase.eu/wp-content/uploads/2017/01/modberry_logo.png00adminhttps://modberry.techbase.eu/wp-content/uploads/2017/01/modberry_logo.pngadmin2021-06-10 12:55:232021-06-10 12:55:40Arduino-aided ModBerry 500-CM4 with ESP32 for power management
The NB-IoT is becoming a standard in wireless communication of IoT devices, for standalone solutions and complex installations with thousands of units, coordinated with gateways. Will NarrowBand-IoT replace other wireless technologies in industrial automation?
What exactly is NarrowBand?
NarrowBand-IoT (NB-IoT) is a radio technology in the field of LPWAN (Low Power Wide Area Network) dedicated for IoT devices, operating on the licensed frequency band used by telecommunications operators.
the ability to connect even tens of thousands of devices in one system,
a global standard,
a high level of security and low cost
You can build mass solutions and those that until now were considered unprofitable. NB-IoT technology works in the licensed band, so there is no risk of interference and blocking communication by competing networks.
The service life of devices powered by two AA batteries is up to 10 years. However, the devices themselves are constructed in such a way that they can work for many years without the need for technical supervision and recharging the battery.
NB-IoT used in industrial solutions
One of many uses of NarrowBand-IoT wireless modems can be communication of edge devices, dedicated to data management, process control (e.g. with MQTT protocol) and monitoring. Latest ESP32-based eModGATE controller from TECHBASE company is a series utilizing MicroPython environment to provide data management solutions for end-points applications. TheeModGATE has built-in Wi-Fi/BT modem and can be equipped with additional NarrowBand-IoT modems
eModGATE eqipped with wireless NB-IoT modem are perfect for industrial automation solutions, e.g. data logging, metering, telemetrics, remote monitoring, security and data management through all Industrial IoT applications.
https://modberry.techbase.eu/wp-content/uploads/2020/07/antennas-4213_960_720.jpg720540adminhttps://modberry.techbase.eu/wp-content/uploads/2017/01/modberry_logo.pngadmin2021-04-14 08:31:002021-04-19 08:34:04IoT device built on ESP32 module and NarrowBand-IoT wireless technology
With latest Raspberry Pi Compute Module 4, the Raspberry Foundation added NVMe SSD support via M.2 (PCIe 2.0) interface. Jeff Geerling tested 3 piece M.2 SSD RAID array which is another example how Compute Module 4 is a milestone in IoT applications.
SSD/eMMC benchmark scores for Compute Module 4
With the debut of Raspberry Pi Compute Module 4 and ModBerry 500 CM4 from TECHBASE, another addition came to Industrial Controllers and Edge Automation. New module carried the likelihood to associate NVMe SSD module by means of M.2 slot utilizing PCIe 2.0 interface.
Order next batch of Raspberry Pi Compute Module 4 devices
TECHBASE’s ModBerry industrial computer series has received an update to Compute Module 4 and is available for pre-orders. TECHBASE is leading manufacturer of Industrial Raspberry Pi and Industrial Compute Module solutions. ModBerry 500 series is fully compatible with all releases of Compute Module from Rasbperry Pi foundation.
Main features of updated device are:
up to 4x faster eMMC Flash with up to 32GB storage
up to 2x faster performance than previous CM3 version with quad-core Cortex-A72 4×1.5GHz
up to 8x more RAM (8GB LPDDR4)
1Gbit Ethernet interface
optional PCIe card support for NVMe SSD drive (via M.2)
optional second PCIe support for wireless modem solutions, e.g. 5G modems
First batch of ModBerry 500 CM4 devices has already been shipped, we are gathering orders for next batch. Hurry up to get your devices quickly!
https://modberry.techbase.eu/wp-content/uploads/2021/03/nvme-raid-benchmark-rpi4.png518800adminhttps://modberry.techbase.eu/wp-content/uploads/2017/01/modberry_logo.pngadmin2021-03-19 10:47:002021-03-24 10:02:19Super fast NVMe SSD RAID support for industrial Raspberry Pi Compute Module 4
Updated ClusBerry device for Smart Home and developers
A new addition to TECHBASE’s Industrial IoT Ecosystem is a variation of recent cluster device, ClusBerry based on multiple Raspberry Pi Compute Module 4 and custom cluster board allowing free configuration from two up to eight modules. Each module can perform various tasks, from standard I/O gateway, wireless modem, Gigabit LAN router to NAS file server and AI Gateway with up to 4 Google Coral Edge TPU modules.
You can manage your cluster modules at ease, boot modules from one to another, upgrade firmware crosswise and provide safe operation of each module. The modules are connected to internal Ethernet Switch and USB OTG to provide such feature and allow quick heal of the cluster.
For home applications and with the nod to software developers, we released ClusBerry device in less industrial casing, to be used in the comfort of own house – on your desk next to PC or wall-mounted in any convenient place. ClusBerry for Home is fully modular as it’s industrial version and offers the same performance and options.
New features of multiple Compute Modules 4 brought to new ClusBerry series
Accompanying the release of ModBerry 500-CM4 and AI GATEWAY 9500-CM4, we present to you a cluster version of the device, called ClusBerry 9500-CM4. Main difference between standard Gateway and ClusBerry is the possibility to include multiple Compute Module 4 in one device, as well as the intended suitable amount of wired and wireless interfaces, suited for the project.
Fully configurable devices are something desirable in the IoT market, where high performance and low cost is a key factor to success of implementation. TECHBASE’s Industrial IoT Ecosystem gives the opportunity to adjust ordered devices with certain resources and cut unnecessary I/Os, lowering the total cost of the device.
Reason for use of Raspberry Pi CM4 cluster in ClusBerry 9500-CM4
Various implementations must have guaranteed high hardware performance to react fast enough in real time. For this purpose, the arrays of processor blocks are constructed to be assigned to individual tasks. For several years now, attempts have been made to use various types of SBC for this purpose, including, of course, Raspberry Pi. However, the practical effectiveness of such solutions so far has not been of interest for several reasons. First of all, these solutions were most often associated with many mechanical limitations and the structure of the matrix itself required excessive wiring, preventing failure-free operation and the cost of the entire maintenance of the structure.
This is where Raspberry Pi Compute Module can shine, but due to the hardware speed limitations of the buses in this module, it was not completely effective and was rather a development platform. Altho the introduction of new Compute Module 4 has opened the possibility to construct and maintain effective hardware matrix solutions with the use of both PCI-Express buses and 1GBps Ethernet. Therefore, the ClusBerry 9500-CM4 opens up completely new capabilities of utilizing cluster solutions for Industrial Automation and server applications.
Wide range of ClusBerry modules
ClusBerry 9500-CM4 supports up to 8 cluster modules andcomes with a variety of interchangeable modules to choose from, including:
Standard 9500-CM4 cluster module with Compute Module 4 and chosen configuration:
I/O Controller with range of DI, DO, AI, 1-Wire, RS-232/485 and CAN interfaces
Communication Gateway with wired (1/2x Ethernet, Serial Ports) and wireless interfaces (LTE-cat.M1, 4G, 5G, LoRa, ZigBee, Z-Wave, Wireless M-Bus)
NAS File Server with 2x SSD SATA III and RAID support, managed with Nextcloud or ownCloud software
USB3.0 Hub for 5G communication, Modems, AI Cluster and peripherals
Gigabit LAN/WAN Router with additional 2.5GbE network card as an independent switch/router shielded from the mainboard cluster network
SuperCap / Power management module for backup power supply (supercapacitors / Li-Ion battery) and sleep mode management aided with ESP32-module
Additional expansion cards, with resources suited for the installation (DIO, AIO, Serial Ports and dedicated sensor cards, detailed below)
ClusBerry 9500-CM4 with available expansion cards
ClusBerry 9500-CM4 can be equipped with multiple expansion cards, e.g. serial RS-232/485 ports, range of digital and analog I/Os, USB, HDMI and Ethernet. Interfaces can be expanded with additional I/Os and opto-isolation, relays, Ethernet, 1-Wire, CAN, M-Bus Master and Slave, accelerometer and many more features like TPM Security Chip & eSIM. The device can also be equipped with additional SuperCap backup power source for continuous work and safe boot/shutdown in case of emergency.
ClusBerry 9500-CM4 series also offers a standard PCI module support for various wireless communication protocols, such as:
GSM modem (4G/LTE and fast 5G modem)
economic NarrowBand-IoT technology
LoRa, ZigBee, Z-Wave, Sigfox, Wireless M-Bus
secondary Wi-Fi/Bluetooth interface or Wi-Fi Hi-Power
custom wireless interfaces
Software cluster management with Docker and K3s Lightweight Kubernetes
With use of Docker-based and Kubernetes solutions, installation and management of ClusBerry 9500-CM4 is easy and backed with a large community for further support and development. Kubernetes is a portable, extensible open-source software platform for managing containerized tasks and sites that enables declarative configuration and automation. The Kubernetes ecosystem is large and dynamically developing. Kubernetes services, support and tools are widely available.
Kubernetes provides:
Detection of new services and traffic. Kubernetes can balance the load and redirect the network traffic to ensure the stability of the entire installation.
Kubernetes data storage management enables you to automatically mount any type of storage system – on-premises, from cloud providers and others.
Automatic deployment and rollback. You can describe the expected state of your installation with Kubernetes, which will take care of bringing the actual state to the expected state in a controlled manner. For example, with Kubernetes, you can manage your cluster modules at ease, boot modules from one to another, upgrade firmware crosswise and provide safe operation of each module
Automatic management of available resources. ClusBerry 9500-CM4provides a cluster of modules that Kubernetes can use to run tasks in containers. You determine the CPU power and RAM requirements for each container. Kubernetes arranges containers on machines in such a way as to make the best use of provided resources.
Self-healing Kubernetes reboots containers that have stopped working, replaces them with new ones, forces disabling containers that are not responding to certain status queries, and does not announce their availability until they are ready to run.
Managing confidential information and Kubernetes configuration with TPM Security Chip allows you to store and manage confidential information such as passwords, OAuth tokens and SSH keys. Secured data and configuration information can be provided and changed without having to rebuild the container image and without exposing sensitive data in the overall software configuration.
ClusBerry 9500-CM4 availability
First prototypes are being developed, since Compute Module 4 is already available for the purchase. Delivery time for various configurations of ClusBerry will be approximately 2 months, depending on the CM4 supply on the market and chosen expansion cards. For more information contact TECHBASE’s Sales Department via email or Live Chat here or visit product website: https://clusberry.techbase.eu.
https://modberry.techbase.eu/wp-content/uploads/2021/03/clusberry-home-edit3.jpg11001650adminhttps://modberry.techbase.eu/wp-content/uploads/2017/01/modberry_logo.pngadmin2021-03-15 12:41:002021-03-16 09:55:28Smart Home solution based on Raspberry Pi Compute Module 4 Cluster
With the premiere of Raspberry Pi Compute Module 4 and ModBerry 500 CM4 from TECHBASE, a new feature came to devices dedicated to Industrial Controllers and Edge Automation. New module brought the possibility to connect NVMe SSD module via M.2 slot using PCIe 2.0 interface.
Order next batch of Raspberry Pi Compute Module 4 devices
TECHBASE’s ModBerry industrial computer series has received an update to Compute Module 4 and is available for pre-orders. TECHBASE is leading manufacturer of Industrial Raspberry Pi and Industrial Compute Module solutions. ModBerry 500 series is fully compatible with all releases of Compute Module from Rasbperry Pi foundation.
Main features of updated device are:
up to 4x faster eMMC Flash with up to 32GB storage
up to 2x faster performance than previous CM3 version with quad-core Cortex-A72 4×1.5GHz
up to 8x more RAM (8GB LPDDR4)
1Gbit Ethernet interface
optional PCIe card support for NVMe SSD drive (via M.2)
optional second PCIe support for wireless modem solutions, e.g. 5G modems
First batch of ModBerry 500 CM4 devices has already been shipped, we are gathering orders for next batch. Hurry up to get your devices quickly!
https://modberry.techbase.eu/wp-content/uploads/2021/01/nvme-ssd-compute-module-raspberry-pi-cm4-rpi-benchmark.png518800adminhttps://modberry.techbase.eu/wp-content/uploads/2017/01/modberry_logo.pngadmin2021-01-30 13:44:332021-01-30 14:09:50Ultra-fast NVMe SSD support for Raspberry Pi Compute Module 4 based industrial device
We may request cookies to be set on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience, and to customize your relationship with our website.
Click on the different category headings to find out more. You can also change some of your preferences. Note that blocking some types of cookies may impact your experience on our websites and the services we are able to offer.
Essential Website Cookies
These cookies are strictly necessary to provide you with services available through our website and to use some of its features.
Because these cookies are strictly necessary to deliver the website, you cannot refuse them without impacting how our site functions. You can block or delete them by changing your browser settings and force blocking all cookies on this website.
Other external services
We also use different external services like Google Webfonts, Google Maps and external Video providers. Since these providers may collect personal data like your IP address we allow you to block them here. Please be aware that this might heavily reduce the functionality and appearance of our site. Changes will take effect once you reload the page.